
Parallel Large Scale Feature Selection for Logistic Regression

Sameer Singh,
University of Massachusetts

Amherst MA 01003
sameer@cs.umass.edu

Jeremy Kubica, Scott Larsen,
Google Inc.

Pittsburgh PA 15213
{jkubica, esl}@google.com

Daria Sorokina
Carnegie Mellon University

Pittsburgh PA 15213
daria@cs.cmu.edu

Abstract

In this paper we examine the problem of efficient
feature evaluation for logistic regression on very large
data sets. We present a new forward feature selection
heuristic that ranks features by their estimated effect
on the resulting model’s performance. An approximate
optimization, based on backfitting, provides a fast and
accurate estimate of each new feature’s coefficient in
the logistic regression model. Further, the algorithm is
highly scalable by parallelizing simultaneously over both
features and records, allowing us to quickly evaluate
billions of potential features even for very large data
sets.

1. Introduction

High-dimensional data sets with large number of
features are used increasingly more often in real-world
machine learning tasks. Text mining problems such
as classification and spam detection rely on features
that describe occurence of specific combinations of
words and therefore the numbers of potential features
can grow up to billions. Similarly, computational
biology problems use inclusions of different amino acids
sequences as features, and multiple ways to extract
them result in large numbers of potential features.
Another example of sparse high-dimensional data are
link data sets, where each feature corresponds to an
absence or presence of a link to some node in a large
network, e.g. networks of co-authors or websites.

Recent comparison studies of machine learning al-
gorithms in high-dimensional data revealed that the
three top performing classes of algorithms for high-
dimensional data sets are logistic regression, Random
Forests and SVMs [6]. Although logistic regression can
be inferior to non-linear algorithms, e.g. kernel SVMs,
for low-dimensional data sets, it often performs equally
well in high-dimensions, when the number of features

goes over 10000, because most data sets become lin-
early separable when the numbers of features become
very large. Given the fact that logistic regression is
often faster to train than more complex models like
Random Forests and SVMs [16], in many situations it
is the preferable method to deal with high dimensional
data sets.

However, even with a scalable algorithm it can still
be computationally infeasible to use the billions of fea-
tures that could be potentially useful. The choice of
features in high dimensions can have a significant ef-
fect on the performance of the learned model and the
computational tractability of the learning algorithm.
Many algorithm-independent high level feature selec-
tion techniques exist, however, in most cases the run-
ning time becomes an issue for large numbers of fea-
tures.

In this paper we examine the problem of efficient
feature evaluation for large scale logistic regression
problems. In particular, we examine the setting of
forward feature selection where on every step new
features are added to an existing model.

We propose a framework for handling feature selec-
tion for logistic regression. First, we present an efficient
scoring heuristic for new features that is based on eval-
uating the performance of an approximate model con-
taining each new feature. Second, we present a highly
parallelized algorithm for feature evaluation that is
based on the map-reduce framework. Together these
techniques provide a highly scalable feature evaluation
algorithm, allowing us to efficiently scale to very large
numbers of both records and features. Our framework
makes use of a number of existing techniques such as
forward selection, projection pursuit, Newton-Raphson
approximation and map-reduce. To the best of our
knowledge, combination of these techniques optimized
specifically for logistic regression, is novel. The re-
sulting algorithm is well suited for real-world problems
with extremely large number of dimensions.

1.1. Logistic Regression

Logistic regression is a simple model for predicting
a probability of event and is often used for binary
classification. When the possible outcomes are coded
as 0 and 1, we can train the logistic regression model
that will predict the probability of the second event.

Assume that we have a data set {(~xi, yi)}, 1 ≤ i ≤
N , where ~xi are the vectors of input feature values
and yi ∈ {0, 1} are binary response values. Logistic
regression represents log odds of the event as a linear
model:

(1.1) log

(
p

1− p

)
= ~β · ~x

Here p is the predicted probability P (y = 1), and ~β is
the vector of model parameters. It is equivalent to the
following representation of p:

(1.2) p = P (y = 1) = f(~x, ~β) =
e
~β·~x

1 + e~β·~x

Therefore the model is completely defined by the
vector of parameters ~β. These parameters are usually
learned by maximizing the data’s loglikelihood:
(1.3)

L(X, ~β) =
N∑
i=1

(
yi ln f(~xi, ~β)+(1−yi) ln(1−f(~xi, ~β))

)
Since there is no closed form solution to this maxi-
mization, the standard approach to solving it is to use
an iterative algorithm such as Newton Raphson [13].
Although at the end we will converge to a very good
approximation of the optimal solution, it can be a rel-
atively time consuming process.

For the rest of the discussion we assume that the
values of ~x are binary or continuous. For general
categorical attributes, we use the standard technique of
exploding the attributes into disjoint binary attributes.
Thus an arity k feature becomes k disjoint binary
features that form a logical grouping, called a feature
class.

1.2. Forward Feature Selection

The goal of feature selection is to find a subset
of features that produces the best1 model f(~x) for

1In compliance with the logistic regression framework in this

paper we focus primarily on defining “best” as the model with

the maximum likelihood on the training or test set. However,
the techniques described in the paper can easily be adapted to

other scoring measures.

the data set {(~x, y)}. A naive approach for a set
of D possible features would simply learn models for
all 2D possible combinations of features and directly
evaluate their performance. However, the cost grows
exponentially with the number of features and this
method becomes completely unfeasible for even small
feature sets.

Forward feature selection [22] is a heuristic that
significantly reduces the number of models that we
need to learn. We begin with an empty model and
then on each iteration of the algorithm we choose a
feature that gives the best performance when added
to the current set of features. We refer to the process
of selecting the best feature to add in an iteration of
forward feature selection as forward feature evaluation.
This means that on d-th iteration we need to build
D− (d− 1) models, where D is the original number of
features, and the overall number of models to build
and evaluate becomes quadratic. It is better than
exponential, but the complexity is still very high when
all ~β coefficients in every model are learned by a
complex iterative method.

In addition to being a successful technique for fea-
ture selection as data preprocessing step, i.e., selecting
the most useful subset from a large set of existing fea-
tures, forward feature evaluation also has practical im-
portance for the design of new features. Given the fact
that often the number of possible new features is very
large, it is important to have a fast way to estimate
how useful they will be if introduced to the existing
model. This is especially important in many real-world
cases where adding new features to the data set may be
expensive or labor intensive. In such cases forward fea-
ture evaluation can act as a quick filter on the features’
effectiveness.

1.3. Paper Organization

The paper proceeds as follows: in §2 we present
Single Feature Optimization (SFO), a new heuristic
for feature evaluation that estimates the effect of new
features on the model performance. We measure
the effectiveness of new features by quickly learning
an approximate model containing this feature and
estimating the resulting change on a given performance
metric. Further, in §3 we introduce an approach
for parallelizing this and other feature-wise evaluation
methods, allowing these methods to scale to large
numbers of records and features. §4 shows an extensive
evaluation of our technique on a number of artificial
and real data sets. We also provide comparison with
the results of other feature selection methods. We
review related work in §5 and conclude in §6.

2. Evaluating the Features

Ideally we would like to evaluate each new feature
by learning and evaluating a new model containing this
new feature. However, as described above, this presents
a computational challenge. For even moderate data set
sizes and numbers of features, this may not be feasible.

In order to speed up the evaluation of a single feature
we use the following heuristic: we retain coefficients
from the current best model and optimize only the
coefficient of the new feature β′d. This produces an
approximate model that can be evaluated. This way
we would create D−d−1 approximate models on each
iteration of forward selection. After evaluating them
to choose the best feature (or group of features) to
add, we rerun the full logistic regression to produce an
exact model that includes the newly added feature(s).
We begin with this exact model for the next iteration
of features selection, so the approximation error does
not add up. As we rerun logistic regression only once
on each iteration, we need to solve it now only D times
— linear as opposed to quadratic.

2.1. Single Feature Optimization (SFO)

We can quickly learn an approximate model by lim-
iting the optimization to only the new features. We
hold the previous model parameters constant and per-
form a one dimensional optimization over the new co-
efficient. For each new feature x′d, we compute an es-
timated coefficient β′d by maximizing the loglikelihood
with the new feature:
(2.4)

argmax
β′
d

N∑
i=1

(
yi ln fd(~xi, ~β) + (1− yi) ln(1− fd(~xi, ~β))

)

where fd(~xi, ~β) denotes the logistic function over the
original feature vector and the new feature:

(2.5) fd(~xi, ~β) =
e
~β·~xi+x′

idβ
′
d

1 + e
~β·~xi+x′

idβ
′
d

This optimization is based on a single iteration of
backfitting [5] or projection-pursuit regression [12]. We
call this heuristic Single Feature Optimization or SFO.

There are a variety of optimization approaches that
we could use to solve Equation 2.4. We use Newton’s
method to solve:

(2.6)
∂L

∂β′d
= 0

We start at β′d = 0 and iteratively update β′d using the

standard update:

(2.7) β′d = β′d −
∂L
∂β′
d

∂2L
∂β′2
d

until convergence. In the case of optimizing the log-
likelihood in (2.4) the derivatives simplify to:

(2.8)
∂L

∂β′d
=

N∑
i=1

x′id(yi − fd(~xi, ~β))

(2.9)
∂2L

∂β′2d
= −

N∑
i=1

x′2idfd(~xi, ~β)(1− fd(~xi, ~β))

It is important to note that this technique of op-
timizing along a single feature can also be used with
other objective functions. As a very simple example we
can add L2-regularization to the above method by just
including a penalty term in (1.3) and thus compute β′d
to maximize:
(2.10)
N∑
i=1

(
yi ln fd(~xi, ~β) + (1− yi) ln(1− fd(~xi, ~β))

)
− λβ′2d

and using the modified derivatives:

(2.11)
∂L

∂β′d
=

N∑
i=1

x′id(yi − fd(~xi, ~β))− 2λβ′d

(2.12)
∂2L

∂β′2d
= −

N∑
i=1

x′2idfd(~xi, ~β)(1− fd(~xi, ~β))− 2λ

More generally, we could directly optimize a completely
different metric, such as squared error. For consistency
and simplicity, unless otherwise noted, we focus on
optimizing unpenalized loglikelihood throughout this
paper.

The obvious drawback of such single feature opti-
mization is that we are not relearning the remaining
coefficients. Therefore we may underestimate the per-
formance of the new model on training set metrics.
Despite this potential drawback, this limit optimiza-
tion still can provide a strong signal. In particular, this
approximation can equivalently be viewed as learning
a single feature model to correct the previous logistic
model.

2.2. Feature Class Optimization

Many real-world problems contain categorical at-
tributes that can be exploded into a series of disjoint
binary features. It is important to note that such explo-
sions are particularly well suited for the single feature
optimization described above.

Features from a single feature class are by definition
disjoint. Since we are holding all of the other coeffi-
cients fixed, we can optimize each feature independently
and later combine the resulting coefficients to form a
complete model. Further, each of these optimizations
only needs to run over those records containing the rel-
evant feature. For an arity A categorical attribute that
has been exploded into ~x′ = {~x′1, . . . , ~x′A} we estimate
~β′ = {~β′1, . . . , ~β′A} by maximizing:
(2.13)∑
i:x′

id=1

(
yi ln fd(~xi, ~β) + (1− yi) ln(1− fd(~xi, ~β))

)

independently for each 0 ≤ d < A. Thus we can triv-
ially break the problem of evaluating large arity cate-
gorical attributes into a series of smaller independent
optimizations.

2.3. Scoring the Features

Once we have the approximate model containing the
features in the new feature class ~β+ = {~β, ~β′1, . . . , ~β′A},
it is trivial to use it to compute standard performance
metrics such as log-likelihood, AUC, or prediction
error. Thus we can score the new feature class by the
directly evaluating the approximate model.

2.4. Faster Optimization with Histograms

As the number of training records increases even the
the one dimensional optimization described in § 2.1 can
require a non-trivial amount of computation. During
each step of the Newton’s method, we are required to
run through all records containing an attribute. For
binary or exploded categorical attributes can further
reduce this cost by using an approximate optimization
based on histograms.

Instead of performing the optimization directly from
the records, we can form a histogram over predicted
probabilities and use this as the basis of our approxi-
mation. We store two histograms with an equal number
of B bins for each attribute, binned on the predicted
probabilities of the base model. Each bin b tracks the
number of records falling into a given range of pre-
dicted probabilities Nb and the number of those records
that also have positive outcomes N+

b . Along with the

counts, it is trivial to store the original activation value
a = β′ ·~x that would have produced the midpoint prob-
ability of that bin pb:

(2.14) ab = log
(

pb
1− pb

)
From the activation we can compute the modified
predicted probability accounting for the new attribute:

(2.15) p′b =
eab+β

′
d

1 + eab+β
′
d

Thus we only need to perform the optimization over
the bins in the histogram, using the modified derivative
computations:

(2.16)
∂L

∂β′d
=

B∑
b=1

N+
b − p

′
b ·Nb

(2.17)
∂L

∂β′2d
= −

B∑
b=1

Nb · p′b · (1− p′b)

This approximation brings the computational cost
of each iteration of Newton’s method from O(N) down
to O(B). This can be a significant savings for problems
with a large number of records where N >> B. The
space and time costs of the histograms can be kept
low by using a sparse representation and an efficient
binning scheme.

The use of histograms introduces an explicit tradeoff
between model accuracy and computational cost. In-
creasing the number of bins provides a more accurate
representation of the probability distribution, but also
increases the cost of computing the Newton’s step over
these bins. The appropriate tradeoff and value of B de-
pends on the problem constraints, number records, and
distributions of the values of β′d. A full analysis of the
tradeoffs is outside the scope of this paper. However, it
is easy to empirically examine the tradeoffs on a partic-
ular data set by varying B and computing the change
in both the estimated coefficients and the algorithm’s
running time.

3. Parallelization

In order to scale up to very large data sets, in terms
of both records and potential features, we can paral-
lelize the feature evaluation algorithm. In particular,
we developed the SFO evaluation algorithm in the con-
text of the map-reduce framework [8]. As described
below, the map-reduce framework consists of two dis-
tinct phases, mapping and reducing, which parallelize

Figure 1. Conceptual data flow of the fea-
ture evaluation map-reduce with 3 input data
blocks and 2 features. In the mapping stage
separate processors operate on blocks of
training data (~xi, yi, ~x′i) to produce intermedi-
ate data records (yi, pi) for each new feature
in the record ~x′i. In the reduce phase separate
processors operate on each of the interme-
diate data sets, computing estimated coeffi-
cients for the new features β′d.

the computation over the training records and poten-
tial features respectively.

The SFO map-reduce algorithm, illustrated in Fig-
ure 1 and code given in Figure 2, consists of three steps:

1. Mapping Phase (parallel over records): Iterate
over the training records (~xi, yi, ~x′i), computing
which new features occur in ~x′i and the predicted
probability of the current model pi = f(~xi, ~β).
Each new feature present in the input record
produces an intermediate data record (x′id, yi, pi).
These intermediate records are aggregated in dis-
joint sets for each new feature.

2. Reduce Phase (parallel over features): For each
feature being evaluated β′d use the corresponding
outputs of the mapping phase, (x′id, yi, pi), to com-
pute an estimated coefficient β′d as in § 2. We can
also aggregate estimated changes in training set
loglikelihood by using the estimated coefficients.

3. Post-processing: Aggregate the coefficients for
all features in the same feature class.

Since the features are always treated independently up
to the post-processing phase, we can also use this algo-
rithm to evaluate many different non-disjoint feature

MapFunction({X, ~y}, ~β)
Input: A data block {X, ~y} and model ~β.
Output: Intermediate data sets Td∀d.

1 FOR each {~xi, yi, ~x′i} in {X, ~y}:
2 pi = f(~xi, ~β)
3 FOR each x′id ∈ ~x′i:
4 Store (yi, pi) in the intermediate data Td
5 Td = Td ∪ (x′id, yi, pi)

ReduceFunction(Td)
Input: An intermediate data set Td.
Output: Estimated coefficient β′d.

1 β′d = 0
2 Until convergence of β′d:
3 ∂L

∂β′
d

= ∂2L
∂β′2
d

= 0
4 FOR each (x′id, yi, pi) ∈ Td:
5 ai = log

(
pi

1−pi

)
6 p′i = eai+β

′
d

1+eai+β
′
d

7 ∂L
∂β′
d

= ∂L
∂β′
d

+ (yi − p′i)x′id
8 ∂2L

∂β′2
d

= ∂2L
∂β′2
d
− p′i(1− p′i)x′2id

9 β′d = β′d − ∂L
∂β′
d
/ ∂

2L
∂β′2
d

Figure 2. The map-reduce SFO algorithm.

classes in a single run. This allows us to trivially ex-
plore many potential feature classes in parallel.

The running time of the mapping phase is ap-
proximately O(N ·Dmax

C) where N is the number of
records, Dmax is the maximum number of features ac-
tive in any record, and C is the number of machines
used. Simiarly, the running time of the reduce phase
is O(Nmax·D

C) where Nmax is the maximum number
of records containing a single new feature. In real
world systems there is also a (non-trivial) constant per-
machine start up cost that bounds the contribution of
adding more machines.

We can also use the same framework to compute
test set metrics with a second map-reduce-based algo-
rithm. In this case the algorithm knows the estimated
coefficients ~β′ and the phases become:

1. Mapping Phase (parallel over records): Iterate
over the test records (~xi, yi, ~x′i) and for each new
feature ~x′id: compute the predicted probabilities
under the old model pi = f(~xi, ~β) and the new
model p′id = fd(~xi, ~β+).

2. Reduce Phase (parallel over features): For each
feature being evaluated β′d use the model with
and without the new coefficient to compute the

difference in score.

3. Post-processing: Aggregate the score changes
for all features in the same feature class.

Finally, it is important to note that this framework
can also be applied to other feature evaluation method-
ologies. For example, we applied the gradient based ap-
proach of Perkins et al. [20]. In this case the mapping
phase iterates over the records computing the gradient
for each active feature. The reduce phase aggregates
these gradients to produce the overall gradient for each
feature.

4. Experimental Results

The feature evaluation problem can be rephrased as
follows. Let the base data set be the data set contain-
ing some of the feature classes (FB) from the complete
set of features (F). Additional features (FE = F −FB)
have to be evaluated, and the most useful feature from
FE has to be selected for inclusion into the model. We
conducted a series of experiments to test SFO’s effec-
tiveness in determining which feature class to add to a
current model. Because we are specifically interested
in efficiently approximating the performance of a sin-
gle step of forward feature selection, our experiments
focus on the task of adding one new feature.

For a baseline comparison we used the standard
forward selection wrapper method: retrain the entire
model with the new feature. This allows us to compare
the SFO approximation with the full forward selection
wrapper method. We used a publicly available IRLS
logistic regression package2 to learn the base model
and the full retrained models [16]. The classifier is
retrained on data with features FB + fi (where fi is a
single feature class from FE). The feature classes fi are
then ranked according to performance of the resulting
classifier. For some experiments, we also compare
our evaluation with the gradient method proposed
by Perkins et. al., which ranks the feature classes
according to their gradient on the training set [20].

4.1. Simulated Data

We first tested the different feature selection algo-
rithms on simulated data from random logistic models.
The goal of the experiments is to find the single new rel-
evant feature within a set of irrelevant features. Thus
the models were created using a number of relevant
base features, FB , with |β| ∈ [0.2, 1.5], one relevant ex-
perimental feature with |β| ∈ [0.2, 1.5], and a number of

2Available at http://www.autonlab.org/

Training Set Test Set
|FB | |FI | IRLS SFO GD IRLS SFO

50 5 17 17 17 15 14
50 10 16 15 13 12 9
50 50 16 11 11 12 10
50 100 18 16 14 17 14
50 200 18 18 11 9 10
50 500 13 13 9 9 5

1 50 18 19 13 15 14
5 50 19 17 15 13 10
10 50 16 11 11 12 10
20 50 18 17 14 14 12
50 50 14 12 12 11 6
100 50 12 10 10 7 6

Table 1. Performance of the feature selection
algorithms as the number of base FB and ir-
relevant FI features increase. Performance
is the number of runs, out of 20 total, in
which the true relevant feature is success-
fully found.

irrelevant experimental features, FI , with |β| ≤ 0.02.
All coefficients had a 50% probability of being nega-
tive and all features had independent, randomly cho-
sen occurrence probabilities in the data between 0.05
and 0.40. The algorithm’s performance was measured
by the number of runs in which the algorithm correctly
ranked the relevant feature as the best one to add.

We examined the effect of increasing both the set of
irrelevant attributes FI and the set of base features
FB . Increasing either of these dimensions should
make the problem more difficult, allowing us to test
the algorithm’s robustness. In particular, as the size
of the base model increases the marginal effect of a
new feature should decrease, making the new feature
harder to find. For both of these experiments we used
2000 data records, a random 10% test set, and no
regularization. The results are shown in Table 1.

Table 1 shows several interesting trends. First,
as expected, resolving the full logistic regression with
IRLS gives the best performance. However, the perfor-
mance on the SFO heuristic is often equal to or prac-
tically close to that of IRLS. Second, the performance
of the feature evaluation algorithms is robust to the
number of irrelevant features, but decreases with the
size of the base model. Third, the test set metrics sig-
nificantly underperform the training set metrics. This
last point is unsurprising given the very simple nature
of the problem and the small test set sizes. Additional
experiments showed that with a 50/50 split the two
metrics were significantly closer.

4.2. UCI data sets

We also examined the performance of the algorithms
on two data sets from the UCI repository: the mush-
room and internet ads data sets [3].

Mushroom. The mushroom data set contains 8124
instances, 22 nominal features, and binary class labels
(poisonous and edible). One of the features had a
number of missing values and was filtered out. We
used a 10% test set in all of the experiments.

This is a good data set for testing feature evaluation
methods since some fairly simple features can predict
the class with high accuracy. For example, the rule:

odor = NOT (almond.OR.anise.OR.none)

gives an accuracy of 98.52%. Since our features are
evaluated independent of each other, such rules are
easily captured by the method.

Our first experiment consisted of simulating the first
two rounds of feature selection. First we started with
just the bias term (FB = { bias }) and evaluated all the
features using our method, i.e. FE = F . Table 2 shows
the top 5 features according to IRLS, with their test set
log-likelihood estimates, and the respective values and
rankings when estimated using SFO. We observe that,
in compliance with the data set description, the most
informative feature was determined by both methods
to be odor. Table 2 also shows the top 5 features from
the second round when we start with FB = { bias, odor
}. It should be noted that in both rounds the features
are ranked almost identically by the IRLS and SFO.
Further, both methods have an identical choice for the
best feature to add.

We also tested the case where we exploded the
feature space by including all 232 possible conjunctions
of feature classes: (fi, fj) ∀i 6= j. Again, the base set
of features only included the bias term. In this case we
would expect conjunctions containing odor to provide
several very close “almost equally good.” options. As
a result we would expect the SFO approximation to
be a larger factor and lead SFO to choose a different
feature from IRLS. The results of this run matched
expectations with SFO and IRLS producing different
orderings among the top features.

Internet Ads. Internet Ads is a larger set contain-
ing 1558 features (3 continuous, and rest binary) and
3279 instances. We divided each continuous feature
into 10 binary features using linear binning. The first
500 feature classes (i.e. 527 binary features) were used
as the base data set, and the rest of the 1059 features
were evaluated. As before, we examine the features
ranked by test set log-likelihood of SFO and the gradi-
ent method, and compare these selections by retraining
IRLS.

Feature IRLS SFO GD
FB Class -LL -LL Rank Rank

odor 0.111 0.076 1 2
spore-print-color 0.558 0.543 2 1

bias gill-color 0.623 0.604 3 9
stalk-surface-above 0.696 0.692 5 3

ring-type 0.711 0.687 4 8

spore-print-color 0.074 0.069 1 5
stalk-surface-above 0.098 0.090 3 3

bias, population 0.099 0.092 5 6
odor gill-color 0.099 0.091 4 7

stalk-color-below 0.100 0.086 2 4

Table 2. The negative test set log-likelihood
for the top features in the Mushroom data
set as selected by IRLS, the corresponding
SFO scores, and rankings from SFO and the
gradient method.

Figure 3 shows the coverage for the complete rank-
ing. Formally, we define the coverage at level x as the
percentage of the top x features selected by an algo-
rithm that are also selected by IRLS. Thus we use the
IRLS wrapper method as a ground truth comparison.

As shown, the SFO method is much better than
the gradient method throughout the range of the list.
It is especially important to note that SFO correctly
chooses the top 4 most important features from a choice
of more than a thousand. On the other hand, the
gradient method fails in ranking the features correctly,
producing a completely different selection from IRLS
for the first 79 features.

Table 3 shows the ranking of the top 3 features for
each algorithm on several metrics. Note that SFO
produces rankings that are very similar to those of full
forward feature selection on all of the metrics. In the
one case where the the two algorithms chose different
“best features” the corresponding AUC scores were
close enough that SFO’s approximation did matter. In
addition the numeric scores, which are not shown for
clarity, are also very close indicating that we are getting
good approximations.

4.3. RCV1-v2

To demonstrate a more realistic data size for the
distributed SFO heuristic, we applied the algorithm to
the RCV1-v2 data [18]. This data consists of stemmed
tokens from text articles on a range of topics. We
used the predefined training set, which contains 23,149
records and 47,152 features. As in [4], we used the
“economics” (ECAT) category as the positive cases,

Training LL Training AUC Test LL Test AUC
Rank IRLS SFO IRLS SFO IRLS SFO IRLS SFO GD

1 1243 1243 1483 1243 1243 1243 1243 1243 1385
2 1399 1399 1243 1483 1399 1399 968 968 *
3 1483 1344 968 1399 968 968 1399 1399 *

Overlap 2 2 3 3 0

Table 3. The top 3 features using the different algorithms and evaluation metrics. The overlap
indicates how many of the top three features are in agreement with IRLS. *Gradient descent had
a 4-way tie among 1040, 1146, 1309, and 1391 for second place.

0 200 400 600 800 1000 1200
Top X of IRLS ranking

0.0

0.2

0.4

0.6

0.8

1.0

C
o
v
e
ra

g
e
 o

f
IR

LS
 R

a
n
ki

n
g

Single Features for InternetAds Dataset

SFO Coverage
Gradient Coverage

Figure 3. Coverage of the IRLS ranking by
SFO and the Gradient method for the Internet
Ads data. The features were ranked by test
set log-likelihood.

giving us 3,449 positive training instances.
As an initial experiment, we examined the initial

features selected by SFO. Our initial base model was
just the bias term and after each round we constructed
a new base models with the features selected so far.
Table 4 shows the top 5 results of SFO after each
of the first 5 rounds under different levels of L2-
regularization.

Table 4 shows several interesting and expected
trends. First, the ordering of the attributes changes as
we add features to the model. The use of a score such as
loglikelihood means that we automatically down-rank
features that no longer add as much expected benefit to
the model, such as those correlated to features already
in the base model. This effect is evident in the addi-
tion of “shar”, which is in the first 5 attributes added
despite not being ranked highly during the first round.

Second, we can clearly see the effect of regularization
on the feature selection. For example, “shar” is moved
from the fourth feature added up to the third when
λ = 100. At the same time the estimated benefit of
the features decrease as the regularization dampens the
1-dimensional optimization.

Finally, the improved performance of the underlying
base model can be seen in the decreasing estimate
benefit of new features. As the base model improves
during each round each new feature is being targeted at
just the residuals of the current model. A similar effect
can be seen in the increasing stability of base model’s
parameters, such as the bias term.

We also compared the first 5 features that we add
to our model with the features that Balakrishnan and
Madigan found to have largest coefficients in their fully
trained and regularized model [4]. Although this is
not a fair comparison, because we are solving different
problems, it still provides an interesting check as to
our ability to find features that are useful in the final
model. Three of the first five features added by SFO
(econom, shar, and inflat), were listed in their top 10.

Finally, we looked that how the top ranked features
change as we are allowed to use more data. The
RCV1-v2 data set is pre-divided into single training
set and four test sets. We ran the first two rounds of
feature selection on an increasing amount of training
data by using the records in the training set and 0 to 4
of the tests sets. This effectively performed feature
selection using 3%, 28%, 52%, 77%, and 100% of
the available data. The features estimated without
regularization and were ranked by changes in training
set loglikelihood.

The results are shown in Table 5. As expected,
different features are ranked higher as we increased the
data size from 3% to 28%. In particular, municip was
chosen as the second feature when using 3%, but shar
was chosen in all other cases. However, after increasing
to 28% of the data the rankings are roughly stable.
It is also interesting to note that with the increased

λ Round 1 Round 2 Round 3 Round 4 Round 5
econom 283.7 municip 204.3 deficit 110.2 shar 106.7 inflat 79.5
deficit 213.7 shar 139.3 shar 106.8 statist 82.1 wag 77.1

0.0 inflat 190.1 coupon 131.3 statist 90.2 wag 79.7 statist 76.5
gdp 182.9 obligat 110.3 inflat 87.2 profit 79.1 moody 68.6

municip 176.3 profit 106.1 gdp 86.6 inflat 74.7 digest 66.0
econom 283.5 municip 201.4 deficit 108.7 shar 106.1 inflat 78.5
deficit 211.6 moody 189.8 shar 106.3 statist 80.3 statist 74.9

10.0 inflat 188.4 shar 138.7 statist 88.3 profit 77.8 wag 74.6
gdp 177.7 coupon 129.2 inflat 86.2 wag 77.2 moody 66.4

budget 165.0 obligat 105.6 gdp 83.4 inflat 72.8 coupon 56.6
econom 269.4 municip 133.5 shar 91.2 deficit 76.6 inflat 54.3
deficit 153.7 shar 120.4 deficit 76.0 inflat 64.9 presal 50.4

100.0 inflat 139.3 moody 116.1 clos 62.4 budget 58.4 clos 47.0
budget 132.9 coupon 80.7 inflat 61.8 statist 50.6 statist 45.1
municip 118.4 profit 80.1 profit 60.8 balanc 49.9 pct 44.2

Table 4. The top 5 features and their estimated improvement in training set loglikelihood for the first
5 rounds of feature selection with two different levels of L2-regularization. The features in italics
have negative estimated coefficients.

amount of data, SFO’s two initial feature selections
match the largest coefficients found by Balakrishnan
and Madigan’s RMMP algorithm on their training set
+ 2 test set case [4].

This last experiment also demonstrates the poten-
tial scalability of this approach over a traditional wrap-
per algorithm. Fully relearning the models, would re-
quire solving 288,062 logistic regressions over 804,414
records. Instead we are able to parallelize the approach
and only touch each record a single time.

4.4. Timing Results

To test the effectiveness of using the map-reduce
framework, we examined the wall clock running time
of the algorithm as we varied the number of machines.
We computed the time required relative to the single
machine implementation. We used two data sets, one
with 1,000,000 records and 50,000 features, and the
other with 10,000,000 records and 100,000 features.
The true β coefficients were randomly generated from
the range [−0.5, 0.5]. Each record contains exactly 20
active features selected randomly without replacement.
The base model has a prior probability of 0.5.

Figure 4 shows a clear benefit as we increase the
number of machines. The deviation from ideal when
using higher number of machines in the Speed Up plots
4(b) and 4(d) occurs since the benefit of adding ma-
chines decreases as the constant startup costs begin to
become an increasing factor. Despite the decreasing re-

turns with the number of machines, we can expect this
parallelization to provide significant wall clock savings
for large data sets or feature sets. This can be observed
by noticing that the deviation from ideal is less for
the larger dataset (for the same number of machines).
Further, we expect the marginal benefit of adding ma-
chines to increase with the computational cost of com-
puting the features. This type of parallelization be-
comes more important when we consider non-trivial
features, such as those requiring string parsing.

5 Related Work

Our work is based on forward selection framework.
Forward selection was introduced by Whitney [22].
Such wrapper algorithms are expected to perform
well, but often at the cost of high computational
complexity [14]. An opposite approach, backward
elimination, also suffers from similiar problems: Abe [1]
discusses the benefits and computational costs of a
modified backward feature selection algorithm and
ultimately suggests batching the features to improve
the efficiency.

Della Pietra et al. [9] describe a feature selection
method for random fields that holds the features in the
current model fixed and selects the new feature by min-
imizing the KL-divergence of the model with the empir-
ical data. McCallum [19] introduces a similar method
for conditional random fields, but his algorithm chooses
the feature that maximizes the new model’s loglikeli-

0% Test Set 25% Test Set 50% Test Set 75% Test Set 100% Test Set
N 23,149 222,477 421,816 621,392 804,414
D 47,152 146,582 204,052 249,587 288,062

econom econom econom econom econom
Round 1 deficit deficit deficit deficit budget

Top 5 inflat budget budget budget deficit
Features gdp gdp gdp gdp gdp

municip monet inflat monet monet
municip shar shar shar shar

Round 2 shar municip municip municip municip
Top 5 coupon moody moody moody moody

Features obligat deficit deficit budget budget
profit budget budget deficit coupon

Table 5. Top 5 features for the first two rounds of feature selection with different training sizes.

hood instead. Both of these techniques use Newton’s
method to solve the resulting one-dimensional opti-
mization problems.

Several other works have also used feature-wise eval-
uation functions that incorporate predictions of the ex-
isting model. Perkins et al. [20] employ feature’s gra-
dient as part of their Grafting algorithm. Fleuret [11]
developed a filter method based on conditional mu-
tual information. It chooses features that maximize
the minimum mutual information with the response
variable conditioned on each of the features already in
the model.

Eyheramendy and Madigan [10] invented the Pos-
terior Inclusion Probability approach. It is based on
knowledge of the type of model that will be used (e.g.
Poisson, Bernoulli, etc.), but only in closed forms.

Some of the feature selection techniques described
above bear similarity to our algorithm, however, our
work goes beyond these approaches. First, we use the
resulting approximate model to rank the features on
potential range of metrics, such as AUC or test set
performance. Second, we present a highly parallel
algorithm that allows us to easily scale to very large
data sets.

In addition to the methods mentioned above, there
exists a wide range of alternate feature selection al-
gorithms. Those include filter methods, such as RE-
LIEF [15] and FOCUS [2], where feature evaluation
is independent of the underlying learning algorithm.
Another approach to feature selection is to automati-
cally select features through regularization or feature
priors. LASSO [21] is a well known algorithm of this
type based on L1 penalty. More recently Krishnapu-
ram et al. [17] proposed Bayesian methods for joint
learning and feature selection. For a good survey of
other classes of feature selection techniques we refer

the interested reader to [7].

6. Conclusions and Future Directions

In this paper we presented a new heuristic and a
highly parallel algorithm for forward feature evalua-
tion. The SFO heuristic provides an approximation of
the effect of adding a new feature to the model. Empir-
ically, we showed that this heuristic results in a good
performance and is comparable to techniques that re-
learn the whole model. Unlike other feature-wise ap-
proaches, the approximate model can also be used to
evaluate the feature’s performance on a range of other
metrics and on validation set performance. Further,
the coefficients estimated by the SFO heuristic can pro-
vide useful starting points to relearn the model and can
provide insights into the structure of the problem.

We described a highly parallel algorithm, based
on the map-reduce framework, for performing feature
evaluation. This approach makes feature evaluation
tractable on massive data sets. Further, it can trivially
be applied to the SFO heuristic as well as other known
heuristics. We showed that using approximate log-
likelihood computations based on histogram data can
further reduce the computational cost.

In the future, we would like to extend this work to
more complex feature evaluation tasks. For example,
limited correlation data could be maintained to facil-
itate evaluating pairs of feature classes. Alternatively
similar techniques may be applied to backward feature
selection, allowing us to quickly perform informed ran-
dom walks in model space. In addition, we would like
to apply SFO to directly optimizing other metrics.

1 2 3 4 5 6 7 8 9 10
Machines

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
la

ti
v
e
 R

u
n
n
in

g
 T

im
e

(a) Relative Running Time (1,000,000 records / 50,000
features)

1 2 3 4 5 6 7 8 9 10
Machines

1

2

3

4

5

6

7

8

9

10

S
p
e
e
d
 U

p

(b) Speedup (1,000,000 records / 50,000 features)

0 10 20 30 40 50
Machines

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 R

u
n
n
in

g
 T

im
e

(c) Relative Running Time (10,000,000 recs / 100,000
feats)

0 10 20 30 40 50
Machines

0

10

20

30

40

50

S
p
e
e
d
 U

p

(d) Speedup (10,000,000 records / 100,000 features)

Figure 4. Relative Time and Speed plots of the distributed SFO evaluator versus the number of
machines used for 1,000,000 records / 50,000 features (a and b) and 10,000,000 records / 100,000
features (c and d). The Speed Up plots are inverse of the relative time plots, where the dashed line
represents ideal behavior.

References

[1] S. Abe. Modified backward feature selection by cross
validation. In 13th European Symposium On Artificial
Neural Networks, 2005.

[2] H. Almuallim and T. G. Dietterich. Learning with
many irrelevant features. In Proceedings of the Ninth
National Conference on Artificial Intelligence (AAAI-
91), pages 547–552. AAAI Press, 1991.

[3] A. Asuncion and D. Newman. UCI machine learning
repository, 2007.

[4] S. Balakrishnan and D. Madigan. Algorithms for
sparse linear classifiers in the massive data setting.
Journal of Machine Learning Research, 2008. to
appear.

[5] A. Buja, T. J. Hastie, and R. J. Tibshirani. Linear
smoothers and additive models (with discussion). An-
nals of Statistics, 17:453–555, 1989.

[6] R. Caruana, N. Karampatziakis, and A. Yessenalina.
An empirical evaluation of supervised learning in high
dimensions. In Proceedings of the 25th International
Conference on Machine Learning, (ICML 2008), 2008.

[7] M. Dash and H. Liu. Feature selection for classifi-
cation. Intelligent Data Analysis - An International
Journal, 1(3), 1997.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI’04: Sixth
Symposium on Operating System Design and Imple-
mentation, 2004.

[9] S. Della Pietra, V. Della Pietra, and J. Lafferty. In-

ducing features of random fields. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
19(4):380–393, 1997.

[10] S. Eyheramendy and D. Madigan. A novel feature
selection score for text categorization. In Proceedings
of the International Workshop on Feature Selection
for Data Mining: Interfacing Machine Learning and
Statistics, April 2005.

[11] F. Fleuret. Fast binary feature selection with condi-
tional mutual information. Journal of Machine Learn-
ing Research, 5:1531–1555, 2004.

[12] J. H. Friedman and W. Stuetzle. Projection pursuit
regression. Journal of the American Statistical Asso-
ciation, 76(376):817–823, December 1981.

[13] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer, 2001.

[14] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant
features and the subset selection problem. In Proceed-
ings of the Eleventh International Conference on Ma-
chine Learning, (ICML 1994), pages 121–129. Morgan
Kauffmann, 1994.

[15] K. Kira and L. A. Rendell. The feature selection
problem: Traditional methods and a new algorithm.
In Proceedings of the Tenth National Conference on
Artificial Intelligence (AAAI-92), pages 129–134. MIT
Press, 1992.

[16] P. Komarek and A. Moore. Making logistic regression
a core data mining tool with tr-irls. In Proceedings
of the 5th International Conference on Data Mining
Machine Learning, page 4, 2005.

[17] B. Krishnapuram, L. Carin, and A. J. Hartemink.
Joint classifier and feature optimization for compre-
hensive cancer diagnosis using gene expression data.
Journal of Computational Biology, 11(2-3):227–242,
March 2004.

[18] D. D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1:
A new benchmark collection for text categorization
research. Journal of Machine Learning Research,
5:361–397, 2004.

[19] A. McCallum. Efficiently inducing features of condi-
tional random fields. In Conference on Uncertainty in
Artificial Intelligence (UAI), 2003.

[20] S. Perkins and J. Theiler. Online feature selection us-
ing grafting. In T. Fawcett and N. Mishra, editors,
Machine Learning, Proceedings of the Twentieth In-
ternational Conference (ICML 2003), August 21-24,
2003, Washington, DC, USA, pages 592–599. AAAI
Press, 2003.

[21] R. Tibshirani. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society,
58(1):267–288, 1996.

[22] A. W. Whitney. A direct method of nonparametric
measurement selection. IEEE Transactions on Com-
puters, 20(9):1100–1103, 1971.

