
Embedding Multimodal Relational Data

Pouya Pezeshkpour
University of California

Irvine, CA
pezeshkp@uci.edu

Liyan Chen
University of California

Irvine, CA
liyanc@uci.edu

Sameer Singh
University of California

Irvine, CA
sameer@uci.edu

1 Introduction

Knowledge bases (KB) are an essential part of many computational systems with applications
in variety of domains, such as search, structured data management, recommendations, question
answering, and information retrieval. However, KBs often suffer from incompleteness, noise in
their entries, and inefficient inference. Due to these deficiencies, learning the relational knowledge
representation has been a focus of active research [1, 2, 32, 9, 19, 26, 3]. These approaches represent
relational triples, consisting of a subject entity, relation, and an object entity, by estimating fixed,
low-dimensional representations for each entity and relation from observations, thus encode the
uncertainty and infer missing facts accurately and efficiently. The subject and the object entities come
from a fixed, enumerable set of entities that appear in the knowledge base.

Knowledge bases in the real world, however, are rich with a variety of different data types. Apart
from a fixed set of entities, the relations often not only include numerical attributes (such as ages,
dates, financial, and geoinformation), but also textual attributes (such as names, descriptions, and
titles/designations) and images (profile photos, flags, posters, etc.). Although these different types
of relations cannot directly be represented as links in a graph over a fixed set of nodes, they can be
crucial pieces of evidences for knowledge base completion. For example the textual descriptions
and images might provide evidence for a person’s age, profession, and designation. Further, this
additional information still contains similar limitations as the conventional link data; they are often
missing, may be noisy when observed, and for some applications, may need to be predicted in order
to address a query. There is thus a crucial need for relational modeling that goes beyond just the
link-based, graph view of knowledge-base completion, is able to utilize all the observed information,
and represent the uncertainty of multimodal relational evidence.

In this paper, we introduce a multimodal embedding approach for modeling knowledge bases that
contains a variety of data types, such as textual, images, numerical, and categorical values. Although
we propose a general framework that can be used to extend many of the existing relational modeling
approaches, here we primary apply our method to the DistMult approach [32]. We extend this
approach that learns a vector for each entity and relation by augmenting it with additional neural
encoders for different evidence data types. For example, when the object of a triple is an image,
we encode it into a fixed-length vector using a CNN, while the textual attributes are encoded using
sequential embedding approaches like LSTMs. The scoring module remains identical; given the vector
representations of the subject, relation, and object of a triple, this module produces a score indicating
the probability that the triple is correct. This unified model allows for flow of the information across
the different relation types, enabling more accurate modeling of relational data.

We provide an evaluation of our proposed approach on two relational databases. Since we are
introducing a novel formulation in the relational setting, we introduce two benchmarks, created by
extending the existing YAGO-10 and MovieLens-100k datasets to include additional relations such
as textual descriptions, numerical attributes, and images of the original entities. In our evaluation,
we demonstrate that our model utilizes the additional information effectively to provide gains in
link-prediction accuracy, and present a breakdown of how much each relation benefits from each
type of the additional information. We also present results that indicate the learned multimodal
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Figure 1: Multimodal Embeddings: Architecture of the proposed work that, given any movie and
any of its attributes, like the title, poster, genre, or release year, uses domain-specific encoders to
embed each attribute value. The embeddings of the subject entity, the relation, and the object value
are then used to score the truth value of the triple by the Scorer, using the DistMult operation.

embeddings are capable of predicting the object entities for different types of data which is based on
the similarity between those entities.

2 Multimodal Relational Embeddings
Knowledge bases (KB) often contain different types of information about entities including links,
textual descriptions, categorical attributes, numerical values, and images. In this section, we briefly
introduce the existing approaches to the embedded relational modeling that focus on modeling of the
linked data using dense vectors. We then describe our model that extends these approaches to the
multimodal setting, i.e., modeling the KB using all the different information.

Problem Setup: The goal of the relational modeling is to train a machine learning model that can
score the truth value of any factual statement, represented here as a triplet of subject, relation and
object, (s, r, o), where s, o ∈ ξ, a set of entities, and r ∈ <, a set of relations. Accordingly, the link
prediction problem can be defined as learning a scoring function ψ : ξ ×<× ξ → R (or sometimes,
[0, 1]). In order to learn the parameters of such a model, training data consists of the observed facts
for the KB, i.e., a set of triples, which may be incomplete and noisy. In the last few years, the methods
that have achieved impressive success on this task consist of models that learn fixed-length vectors,
matrices, or tensors for each entity in ξ and relation in <, with the scoring function consisting of
varying operators applied to these learned representations (described later in Section 4).

DistMult for Link Prediction: Although our proposed framework can be used with many of the
existing relational models, here we focus on the DistMult approach [32] because of its simplicity,
popularity, and high accuracy. In DistMult, each entity i is mapped to a d-dimensional dense vector
(ei ∈ Rd×1) and each relation r to a diagonal matrix Rr ∈ Rd×d, and consequently, the score for any
triple (s, r, o) is computed as: ψ(s, r, o) = eTs Rreo. Since we cannot guarantee that the unobserved
triples are true negatives, we use a pairwise ranking loss that tries to score existing (positive) triples
higher than non-existing triples (negatively sampled), as:

min
Θ

∑
i∈D+

∑
j∈D−

max(0, γ + φj − φi) (1)

where D+, D− denote the set of existing and non-existing (sampled) triples, γ is the width of margin,
φi is the score of the ith triple and Θ is the set of all embeddings. Following Bordes et al. [2], we
generate negative samples of training triplets by replacing either subject or object entity with a
random entity. DistMult thus learns entity and relation representations that encode the knowledge
base, and can be used for completion, queries, or cleaning.

Multimodal Value Embeddings: Existing approaches to this problem assume that the subjects and
the objects are from a fixed set of entities ξ, and thus are treated as indices into that set. However, in
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the most of the real-world KBs, the objects of triples (s, r, o) are not restricted to be in some indexed
set, and instead, can be of any data type such as numerical, categorical, image, and text. In order
to incorporate such objects into the existing relational models like DistMult, we propose to learn
embeddings for any of these types of data. We utilize recent advances in deep learning to construct
encoders for these objects to represent them, essentially providing an embedding eo for any object
value.

The overall goal remains the same: the model needs to utilize all the observed subjects, objects,
and relations, across different data types, in order to estimate whether any fact (s, r, o) holds. We
present an example of an instantiation of our model for a knowledge base containing movie details
in Figure 1. For any triple (s, r, o), we embed the subject (movie) and the relation (such as title,
release year, or poster) using a direct lookup. For the object, depending on the domain (indexed,
string, numerical, or image, respectively), we use an appropriate encoder to compute its embedding
eo. We use appropriate encoders for each data type, such as CNNs for images and LSTMs for text.
As in DistMult, these embeddings are used to compute the score of the triple. Training such a model
remains identical to DistMult, except that for negative sampling, here we replace the object entity
with a random entity from the same domain as the object (either image, text, numerical or etc.).

Encoding Multimodal Data: Here we describe the encoders we use for multimodal objects.

Structured knowledge: Consider a triplet of information in the form of (s, r, o). To represent the
subject entity s and the relation r as independent embedding vectors (as in previous work), we pass
their one-hot encoding through a dense layer. Furthermore, for the case that the object entity is
categorical, we embed it through a dense layer with a recently introduced selu activation [13], with
the same number of nodes as the embedding space dimension.

Numerical: Objects in the form of real numbers can provide a useful source of information and
are often quite readily available. We use a feed forward layer, after applying basic normalization,
in order to embed the numbers into the embedding space. Note that we are projecting them to
a higher-dimensional space, from R → Rd. It is worth contrasting this approach to the existing
methods that often treat numbers as distinct entities, i.e., learning independent vectors for numbers
39 and 40, relying only on data to learn that these values are similar to each other.

Text: Since text can be used to store a wide variety of different types of information, for example
names versus paragraph-long descriptions, we create different encoders depending on the lengths of
the strings involved. For attributes that are fairly short, such as names and titles, we use character-
based stacked, bidirectional LSTM to encode these strings, similar to Verga et al. [28], using the
final output of the top layer as the representation of the string. For strings that are much longer, such
as detailed descriptions of entities consisting of multiple sentences, we treat them as a sequence of
words, and use a CNN over the word embeddings, similar to Francis-Landau et al. [5], in order to
embed such values. These two encoders provide a fixed length encoding that has been shown for
multiple tasks to be an accurate semantic representation of the strings [4].

Images: Images can also provide useful evidence for modeling entities. For example, we can extract
person’s details such as gender, age, job, etc., from image of the person [15], or location information
such as its approximate coordinates, neighboring locations, and size from map images [30]. A
variety of models have been used to compactly represent the semantic information in the images, and
have been successfully applied to tasks such as image classification, captioning [11], and question-
answering [33]. To embed images such that the encoding represents such semantic information, we
use the last hidden layer of VGG pretrained network on Imagenet [21], followed by compact bilinear
pooling [6], to obtain the embedding of the images.

3 Experiments
In this section we first demonstrate the capability of our model in comparison to DistMult method
through a variety of link prediction tasks on our datasets, and present the analysis of the relations
that most benefite from each type of data. Then we present some examples of recovery of missing
multimodal information to demonstrate the kinds of dependencies the model is capturing.

Evaluation Benchmarks1: To evaluate the performance of our mutimodal relational embeddings
approach, we provide two new benchmarks by extending existing datasets. The first one is built by

1The datasets available at: https://github.com/pouyapez/multim-kb-embeddings
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#Relations 13
#Users 943
#Movies 1682
#Posters 1651∗
#Ratings (train) 80,000
#Ratings (test) 20,000

(a) MovieLens-Plus

#Relations 45
#Total Entities 123,182
#Subjects 112,981
#Link Triples 1,079,040
#Numerical Attributes 111,406∗
#Descriptions 107,326∗
#Image Attributes 61,246∗

(b) Yago10-Plus

Figure 2: Statistics of the two benchmark datasets we are using. The numbers in ∗ are our contributions
to the datasets, i.e. the reason for the Plus suffix.

adding posters to movie recommendation dataset, MovieLens 100k, and the second one by adding
image and textual information for YAGO-10 dataset from DBpedia and numerical information from
YAGO-3 database. We will release the datasets publicly for future research on multimodal relation
modeling. Tables 2a and 2b provide the statistics of these datasets1.

MovieLens-100k-Plus: We start with the MovieLens-100k dataset 2 [10], a popular benchmark for
recommendation system for predicting user ratings with contextual features, containing 100, 000
ratings from around 1000 users on 1700 movies. MovieLens already contains rich relational data
about occupation, gender, zip code, and age for users and genre, release date, and the titles for
movies. We consider the genre attribute for each movie as a binary vector with length 19 (number
of different genres provided by MovieLens). We use this representation because each movie genre
is a combination of multiple, related categories. Moreover, we collect the movie posters for each
movie from TMDB3. We treat the 5-point ratings as five different relations in KB triple format, i.e.,
(user, r = 5,movie), and evaluate the rating predictions as data for other relations is introduced into
to the model. We use 10% of rating samples as the validation data.

YAGO-10-Plus: Even though MovieLens has a variety of data types, it is still quite small, and is
over a specialized domain. We also consider a second dataset that is much more appropriate for
knowledge graph completion and is popular for link prediction, the YAGO3-10 knowledge graph
[23, 18]. This graph consists of around 120,000 entities, such as people, locations, and organizations,
and 37 relations, such as kinship, employment, and residency, and thus much closer to the traditional
information extraction goals. We extend this dataset with the textual description (as an additional
relation) and the images associated with each entity (we have collected images for half of the entities),
provided by DBpedia4 [14]. We also identify few more additional relations such as wasBornOnDate,
happenedOnDate, etc, that have dates as values.

Experimental setup: To facilitate a fair comparison we implement all methods using the identical
loss and optimization for training, i.e., AdaGrad and the ranking loss. We tune all the hyperparameters
on the validation data and use grid search to find the best hyperparameters. For evaluation we use
two metrics of MRR and Hits@ which are commonly used in previous works.

Link Prediction: In this section, we evaluate the capability of our model in the link prediction
task. The goal is to calculate MRR and Hits@ metric (ranking evaluations) of recovering the missing
entities from triples in the test dataset, performed by ranking all the entities and computing the rank of
the correct entity. Figure 3a shows the link (rating) prediction evaluation on movielens dataset when
test data is consisting only of rating triples. As it shown, the model R+M+U+T outperform other
methods with a considerable gap, which shows the importance of facilitating extra information in our
advantages. On the other hand, Furthermore, Hits@1 for our baseline model is 40%, which matches
existing recommendation systems [8]. Based on results it seems that adding titles information has a
higher impact compared to the poster information.

The result of link prediction on YAGO is provided in Figure 3b. We see that the model that encodes
all type of information consistently performs better than other models, indicating that the model is
effective in utilizing the extra information. On the other hand, the model that uses only text performs
the second best, suggesting the entity descriptions contain more information than others. It is notable

1our contributions to the datasets
2https://grouplens.org/datasets/MovieLens/100k/
3https://www.themoviedb.org/
4http://wiki.dbpedia.org/
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Models Predicting Rating
MRR Hits@1 RMSE

R (DistMult) 0.62 0.40 1.48
R+M 0.63 0.421 1.63
R+U 0.643 0.41 1.73
R+M+U 0.646 0.423 1.37
R+M+U+T 0.650 0.424 1.23
R+M+U+P 0.652 0.413 1.27
R+M+U+T+P 0.644 0.42 1.3

(a) Rating prediction for MovieLens. The model
using rating is labeled R, movie-attributes as M,
user-attributes as U, titles as T, and posters as P.

Models MRR Hits@1 Hits@3

S (DistMult) 0.326 0.221 0.375
S+D 0.36 0.262 0.395
S+N 0.325 0.213 0.382
S+I 0.342 0.235 0.352
S+D+N 0.359 0.243 0.401
S+D+I 0.351 0.239 0.371
S+N+I 0.362 0.259 0.402
S+D+N+1 0.372 0.268 0.418

(b) Link Prediction for YAGO dataset. The model
using structured relations is labeled S, description as D,
numerical information as N, and images as I.

Figure 3: Accuracy of Multimodal Embeddings
Table 1: Per-Relation Breakdown of how much each type of data is helping for YAGO.

Links Only +Numbers +Description +Images
Relation MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

isAffiliatedTo 0.364 0.259 0.370 0.271 0.392 0.301 0.368 0.254
playsFor 0.371 0.261 0.391 0.291 0.389 0.296 0.381 0.275
isLocatedIn 0.341 0.223 0.352 0.249 0.401 0.317 0.369 0.265
hasGender 0.7894 0.602 0.771 0.582 0.796 0.627 0.806 0.613
wasBornIn 0.361 0.241 0.372 0.261 0.408 0.326 0.381 0.304

that model S outperformed by all other models, demonstrate the importance of using variations of
information to attain higher accuracy.

Relation Breakdown: We perform additional analysis on the YAGO dataset to gain a deeper
understanding of the performance of our model. Table 1 compares our models on the top five
most frequent relations. As shown, the model that includes textual description significantly benefits
isAffiliatedTo, isLocatedIn and wasBornIn relations, as this information often appears in
text. Moreover, images are useful to detect genders (hasGender), while for the relation playsFor,
numerical (dates) are more effective than images.

Querying Multimodal Attributes: Although we only encode multimodal data, and cannot decode
in this setting directly, we provide examples in which we query for a multimodal attribute (like the
poster), and rank all existing values (other posters) to observe which ones get ranked the highest.
In other words, we are asking the model, if the actual poster is not available, which of the existing
posters would the model recommend as a replacement (and same for title and genre). In Table 2
we show top-3 predicted values. We can see that the selected posters have visual similarity to the
original poster in regards to the background, and placement of a face and the movie title in the poster.
Along the same line, genres, though not exact, are quite similar as well (at least one of original
genres appear in the predicted ones). And finally, the selected titles are also somewhat similar in
meaning, and in structure. For example, two of the predicted titles for “Die Hard” have something to
do with dying and being buried. Furthermore, both “The Godfather” and its first predicted title “101
dalmatians” consist of a three-character word followed by a longer word. We leave extensions that
directly perform such decoding to future work.

4 Related Work
There is a rich literature on modeling knowledge bases using low-dimensional representations,
differing in the operator used to score the triple. Whether they use matrix and tensor multiplication
[17, 32, 22], euclidean distance [2, 29, 16], circular correlation [19], or the Hermitian dot product [26]
as scoring function, the encoding component uses only the structured information for entities. We
are the first to use different types of information such as text, numerical values and images in the
encoding component while treating them as separate triplets of information.

A number of methods utilize an extra type of information as observed features for entities, either
merging, concatenating, or averaging the entity and its features to compute its embeddings, such as
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Table 2: Querying Multimodal Values: We find the highest scoring values, according to our trained
model, for each attribute of a movie, and compare it to the true value.

True Value Top-3 Predicted Values

“The Godfather” “101 Dalmatians”, “Love and Death on Long Island”, “First Knight”

“Action, Crime, Drama” “Drama, Romance, War, Western”, “Drama, Romance, War”, “Drama, War”

“Die Hard” “The Band Wagon”, “Underground”, “Roseanna’s Grave”

“Action, Thriller” “Drama, War”, “Action, Drama, War”, “Comedy, Drama, War”

numerical values [7], images [31], and text [24, 25, 27]. In addition to treating extra information as
features, graph embedding approaches [3, 20, 12] consider fixed number of attributes as a part of en-
coding component to achieve more accurate embedding. The difference between our model and these
mentioned approaches is three-fold: we are the first to use all varieties of information, we treat these
different type of information (numerical, text, image) as relational triples of structured knowledge
instead of predetermined features, and, our model represents uncertainty in them, supporting missing
values and facilitating recovery of lost information, which is not possible with previous approaches.

5 Conclusions
Motivated by the need to utilize multiple source of information to achieve more accurate link pre-
diction we presented a novel neural approach to multimodal relational learning. In this paper we
introduced a universal link prediction model that uses different types of information to model knowl-
edge bases. We proposed a compositional encoding component to learn unified entity embedding
that encode the variety of information available for each entity. In our analysis we show that our
model in comparison to a common link predictor, DistMult, can achieve higher accuracy, showing
the importance of employing the available variety of information for each entity. Since all the
existing datasets are designed for previous methods, they lack mentioned kind of extra information.
In result, we introduced two new benchmarks YAGO-10-plus and MovieLens-100k-plus, that are
extend version of existing datasets. Further, in our evaluation, we showed that our model effectively
utilizes the extra information in order to benefit existing relations. We will release the datasets and
the open-source implementation of our models publicly.

There are number of avenues for future work. We will investigate the performance of our model
in completing link prediction task using different scoring function and more elaborate encoding
component and objective function. We are also interested in modeling decoding of multimodal values
in the model itself, to be able to query these values directly. Further, we plan to explore efficient
query algorithms for embedded knowledge bases, to compete with practical database systems.

6



References
[1] Antoine Bordes, Jason Weston, Ronan Collobert, Yoshua Bengio, et al. Learning structured

embeddings of knowledge bases. In AAAI, 2011.

[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in neural information
processing systems, pages 2787–2795, 2013.

[3] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. arXiv preprint arXiv:1707.01476, 2017.

[4] Cícero Nogueira Dos Santos and Maira Gatti. Deep convolutional neural networks for sentiment
analysis of short texts. In COLING, pages 69–78, 2014.

[5] Matthew Francis-Landau, Greg Durrett, and Dan Klein. Capturing semantic similarity for entity
linking with convolutional neural networks. In NAACL, 2016.

[6] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
317–326, 2016.

[7] Alberto Garcia-Duran and Mathias Niepert. Kblrn: End-to-end learning of knowledge base
representations with latent, relational, and numerical features. arXiv preprint arXiv:1709.04676,
2017.

[8] Roger Guimerà, Alejandro Llorente, Esteban Moro, and Marta Sales-Pardo. Predicting human
preferences using the block structure of complex social networks. PloS one, 7(9):e44620, 2012.

[9] Nitish Gupta and Sameer Singh. Collectively embedding multi-relational data for predicting
user preferences. CoRR, 2015.

[10] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems (TiiS), 5(4):19, 2016.

[11] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3128–3137, 2015.

[12] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[13] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. arXiv preprint arXiv:1706.02515, 2017.

[14] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, et al. Dbpedia–a large-
scale, multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2):167–195,
2015.

[15] Gil Levi and Tal Hassner. Age and gender classification using convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 34–42, 2015.

[16] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation
embeddings for knowledge graph completion. In AAAI, pages 2181–2187, 2015.

[17] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. In Proceedings of the 28th international conference on
machine learning (ICML-11), pages 809–816, 2011.

[18] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago: scalable machine
learning for linked data. In Proceedings of the 21st international conference on World Wide
Web, pages 271–280. ACM, 2012.

7



[19] Maximilian Nickel, Lorenzo Rosasco, Tomaso A Poggio, et al. Holographic embeddings of
knowledge graphs. In AAAI, pages 1955–1961, 2016.

[20] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. arXiv preprint
arXiv:1703.06103, 2017.

[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

[22] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural
tensor networks for knowledge base completion. In Advances in neural information processing
systems, pages 926–934, 2013.

[23] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th international conference on World Wide Web, pages 697–706.
ACM, 2007.

[24] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In EMNLP,
volume 15, pages 1499–1509, 2015.

[25] Kristina Toutanova, Victoria Lin, Wen-tau Yih, Hoifung Poon, and Chris Quirk. Compositional
learning of embeddings for relation paths in knowledge base and text. In ACL (1), 2016.

[26] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. In International Conference on Machine
Learning, pages 2071–2080, 2016.

[27] Cunchao Tu, Han Liu, Zhiyuan Liu, and Maosong Sun. Cane: Context-aware network embed-
ding for relation modeling. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1722–1731, 2017.

[28] Patrick Verga, David Belanger, Emma Strubell, Benjamin Roth, and Andrew McCallum. Multi-
lingual relation extraction using compositional universal schema. Annual Conference of the
North American Chapter of the Association for Computational Linguistics (NAACL), 2016.

[29] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In AAAI, pages 1112–1119, 2014.

[30] Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet-photo geolocation with convolutional
neural networks. In European Conference on Computer Vision, pages 37–55. Springer, 2016.

[31] Ruobing Xie, Zhiyuan Liu, Tat-seng Chua, Huanbo Luan, and Maosong Sun. Image-embodied
knowledge representation learning. arXiv preprint arXiv:1609.07028, 2016.

[32] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In ICLR, 2015.

[33] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention networks
for image question answering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 21–29, 2016.

8


	Introduction
	Multimodal Relational Embeddings
	Experiments
	Related Work
	Conclusions

