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Abstract

Extraction of entities from ad creatives is an
important problem that can benefit many com-
putational advertising tasks. Supervised and
semi-supervised solutions rely on labeled data
which is expensive, time consuming, and dif-
ficult to procure for ad creatives. A small
set of manually derived constraints on fea-
ture expectations over unlabeled data can be
used to partially and probabilistically label
large amounts of data. Utilizing recent work
in constraint-based semi-supervised learning,
this paper injects light weight supervision
specified as these “constraints” into a semi-
Markov conditional random field model of en-
tity extraction in ad creatives. Relying solely
on the constraints, the model is trained on a set
of unlabeled ads using an online learning al-
gorithm. We demonstrate significant accuracy
improvements on a manually labeled test set
as compared to a baseline dictionary approach.
We also achieve accuracy that approaches a
fully supervised classifier.

1 Introduction

Growth and competition in web search in recent
years has created an increasing need for improve-
ments in organic and sponsored search. While foun-
dational approaches still focus on matching the exact
words of a search to potential results, there is emerg-
ing need to better understand the underlying intent in
queries and documents. The implicit intent is partic-
ularly important when little text is available, such as
for user queries and advertiser creatives.

This work specifically explores the extraction of
named-entities, i.e. discovering and labeling phrases
in ad creatives. For example, for an ad “Move to

San Francisco!”, we would like to extract the entity
san francisco and label it a CITY. Similarly, for an
ad “Find DVD players at Amazon”, we would ex-
tract dvd players as a PRODUCT and amazon as a
ORGNAME. The named-entities provide important
features to downstream tasks about what words and
phrases are important, as well as information on the
intent. Much recent research has focused on extract-
ing useful information from text advertisement cre-
atives that can be used for better retrieval and rank-
ing of ads. Semantic annotation of queries and ad
creatives allows for more powerful retrieval models.
Structured representations of semantics, like the one
studied in our task, can be directly framed as infor-
mation extraction tasks, such as segmentation and
named-entity recognition.

Information extraction methods commonly rely
on labeled data for training the models. The hu-
man labeling of ad creatives would have to pro-
vide the complete segmentation and entity labels for
the ads, which the information extraction algorithm
would then rely on as the truth. For entity extraction
from advertisements this involves familiarity with
a large number of different domains, such as elec-
tronics, transportation, apparel, lodging, sports, din-
ing, services, etc. This leads to an arduous and time
consuming labeling process that can result in noisy
and error-prone data. The problem is further com-
pounded by the inherent ambiguity of the task, lead-
ing to the human editors often presenting conflicting
and incorrect labeling.

Similar problems, to a certain degree, are also
faced by a number of other machine learning tasks
where completely relying on the labeled data leads
to unsatisfactory results. To counter the noisy
and sparse labels, semi-supervised learning meth-
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ods utilize unlabeled data to improve the model
(see (Chapelle et al., 2006) for an overview). Fur-
thermore, recent work on constraint-based semi-
supervised learning allows domain experts to eas-
ily provide additional light supervision, enabling the
learning algorithm to learn using the prior domain
knowledge, labeled and unlabeled data (Chang et
al., 2007; Mann and McCallum, 2008; Bellare et al.,
2009; Singh et al., 2010).

Prior domain knowledge, if it can be easily ex-
pressed and incorporated into the learning algo-
rithm, can often be a high-quality and cheap sub-
stitute for labeled data. For example, previous
work has often used dictionaries or lexicons (lists
of phrases of a particular label) to bootstrap the
model (Agichtein and Ganti, 2004; Canisius and
Sporleder, 2007), leading to a partial labeling of the
data. Domain knowledge can also be more proba-
bilistic in nature, representing the probability of cer-
tain token taking on a certain label. For most tasks,
labeled data is a convenient representation of the do-
main knowledge, but for complex domains such as
structured information extraction from ads, these al-
ternative easily expressible representations may be
as effective as labeled data.

Our approach to solving the the named entity ex-
traction problem for ads relies completely on do-
main knowledge not expressed as labeled data, an
approach that is termed minimally supervised. Each
ad creative is represented as a semi-Markov condi-
tional random field that probabilistically represents
the segmentation and labeling of the creative. Exter-
nal domain knowledge is expressed as a set of targets
for the expectations of a small subset of the features
of the model. We use alternating projections (Bel-
lare et al., 2009) to train our model using this knowl-
edge, relying on the rest of the features of the model
to “dissipate” the knowledge. Topic model and co-
occurrence based features help this propagation by
generalizing the supervision to a large number of
similar ads.

This method is applied to a large dataset of text
advertisements sampled from a variety of different
domains. The minimally supervised model performs
significantly better than a model that incorporates
the domain knowledge as hard constraints. Our
model also performs competitively when compared
to a supervised model trained on labeled data from a

similar domain (web search queries).
Background material on semi-CRFs and con-

straint based semi-supervised learning is summa-
rized in Section 2. In Section 3, we describe the
problem of named entity recognition in ad creatives
as a semi-CRF, and describe the features in Sec-
tion 4. The constraints that we use to inject super-
vision into our model are listed in Section 5. We
demonstrate the success of our approach in Sec-
tion 6. This work is compared with related literature
in Section 7.

2 Background
This section covers introductory material on

the probabilistic representation of our model
(semi-Markov conditional random fields) and the
constraint-driven semi-supervised method that we
use to inject supervision into the model.

2.1 Semi-Markov Conditional Random Fields

Conditional Random Fields (CRFs) (Lafferty et
al., 2001) use a Markov random field to model the
conditional probability P (y|x). CRFs are com-
monly used to learn sequential models, where the
Markov field is a linear-chain, and y is a linear se-
quence of labels and each label yi ∈ Y . Let f be a
vector of local feature functions f = 〈f1, . . . , fK〉,
each of which maps a pair (x,y) and an index i to
a measurement fk(i,x,y) ∈ <. Let f(i,x,y) be
the vector of these measurements, and let F(x,y) =∑|x|

i f(i,x,y). CRFs use these feature functions in
conjunction with the parameters θ to represent the
conditional probability as follows:

P (y|x, θ) =
1

Z(x)
eθ·F(x,y)

where Z(x) =
∑

y′ e
θ·F(x,y′).

For sequential models where the same labels ap-
pear within a sequence as contiguous blocks (e.g.,
named entity recognition) it is more convenient to
represent these blocks directly as segments. This
representation was formulated as semi-Markov con-
ditional random fields (Semi-CRFs) in (Sarawagi
and Cohen, 2004). The segmentation of a sequence
is represented by s = 〈s1, . . . , sp〉 where each seg-
ment sj = 〈tj , uj , yj〉 consists of a start position
tj , an end position uj , and a label yj ∈ Y . Similar
to the CRF, let g be the vector of segment feature
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functions g = 〈g1, . . . , gK〉, each of which maps
the pair (x, s) and an index j to a measurement
gk(j,x, s) ∈ <, and G(x, s) =

∑|s|
j g(j,x, s). The

conditional probability is represented as:

P (s|x, θ) =
1

Z(x)
eθ·G(x,s)

where Z(x) =
∑

s′ e
θ·G(x,s′). To assert the Marko-

vian assumption, each gk(j,x, s) only computes
features based on x, sj , and yj−1

1.
An exact inference algorithm was described in

(Sarawagi and Cohen, 2004), and was later im-
proved to be more efficient (Sarawagi, 2006).

2.2 Constraint Driven Learning Using
Alternating Projections

Recent work in semi-supervised learning uses
constraints as external supervision (Chang et al.,
2007; Mann and McCallum, 2008; Bellare et al.,
2009; Singh et al., 2010). These external constraints
are specified as constraints on the expectations of a
set of auxiliary features g′ = {g′1, . . . , g′k} over the
unlabeled data. In particular, given the targets u =
{u1, . . . , uk} corresponding to the auxiliary features
g′, the constraints can take different forms, for ex-
ample L2 penalty ( 1

2β‖ui−
∑

j Ep[g
′
i(xj , s)]‖22 = 0),

L1 box constraints (|ui −
∑

j Ep[g
′
i(xj , s)]| ≤ β)

and Affine constraints2 (Ep[g′i(x, s)] ≤ ui). In this
work, we only use the affine form of the constraints.

For an example, using domain knowledge, we
may know that token “arizona” should get the label
STATE in at least half of the occurrences in our data.
To capture this, we introduce an auxiliary feature g′ :
[[Label=STATE given Token=“arizona”]]. The
affine constraint is written as Ep[g′(x, y)] ≥ 0.5.

These constraints have been incorporated into
learning using Alternating Projections (Bellare et
al., 2009). Instead of directly optimizing an ob-
jective function that includes the constraints, this
method considers two distributions, pλ and qλ,µ,
where pλ(s|x) = 1

Z(x)e
λ·G(x,s) is the usual semi-

Markov model, and qλ,µ = 1
Z(x)e

(λ·G(x,s)+µ·G′(x,s))

is an auxiliary distribution that satisfies the con-
straints and has low divergence with the model pλ.

1i.e. gk(j,x, s) can be written as gk(yj−1,x, sj)
2where Ep[g] represents the expectation of g over the unla-

beled data using the model p.

In the batch setting, parameters λ and µ are
learned using an EM-like algorithm, where µ is fixed
while optimizing λ and vice versa. Each of the up-
dates in these steps decomposes according to the in-
stances, leading to a stochastic gradient based online
algorithm, as follows:

1. For t = 1, . . . , T , let η = 1
t+t0

where t0 =
1/η0, η0 the initial learning rate. Let labeled
and unlabeled data set sizes be m and n − m
respectively. Let the initial parameters be λ0

and µ0, and α be the weight of L2 regulariza-
tion on λ.

2. For a new labeled instance xt with segmen-
tation st, set µt = µt−1 and λt = λt−1 +

η
[
g(xt, st)− Epλt−1 [g(xt, s)]− αλt−1

n

]
.

3. For a new unlabeled instance xt, µt =

µt−1 + η
[

u
(n−m) − Eqλt−1,µt−1 [g

′(xt, s)]
]

and λt = λt−1 +
η

[
Eqλt−1,µt−1 [g(xt, s)]− Epλt−1 [g(xt, s)]− αλt−1

n

]
.

Online training enables scaling the approach to
large data sets, as is the case with ads. In our ap-
proach we rely only on unlabeled data (m = 0, and
step 2 of the above algorithm does not apply).

3 Model
Most text ads consist of a brief title and an ac-

companying abstract that provides additional infor-
mation. The objective of our paper is to extract
the named-entity phrases within these titles and ab-
stracts, then label them with a type from a pre-
determined taxonomy. An example of such an ex-
traction is shown in Fig 1.

We represent the ad creatives as a sequence of
individual tokens, with a special token inserted be-
tween the title and the abstract of the ad. The dis-
tribution over possible phrases and labels of the ad
is expressed as a semi-Markov conditional random
field, as described earlier in Section 2.1.

3.1 Label Taxonomy

In most applications of CRFs and semi-CRFs, the
domain of labels is a fixed set Y , where each label
indexes into one value. Instead, in our approach, we
represent our set of labels as a taxonomy (tree). The
labels higher in the taxonomy are more generic (for
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Ad Title: Bradley International Airport Hotel
Ad Abstract: Marriott Hartford, CT Airport hotel - free shuttle service & parking.

Output: Bradley International Airport Hotel

Marriott Hartford, CT Airport hotel free shuttle service & parking.

Label Segment
PLACE: AIRPORT Bradley International

BUSINESS: TRAVEL Hotel
ORGNAME: LODGING Marriott

PLACE: CITY Hartford
PLACE: STATE CT

BUSINESS: TRAVEL hotel
PRODUCT: TRAVEL shuttle service & parking.

Figure 1: Example Prediction: An example of an ad creative (title and abstract), along with a set of probable ex-
tracted entities. Note that even in this relatively simple example, there is some ambiguity about what is the correct
segmentation and labeling.

instance, PLACE) and the labels lower in the taxon-
omy are more specific (for instance, STATE may be
a child of PLACE). The taxonomy of labels that we
use for tagging phrases is shown in Figure 2.

When the model predicts a label for a segment,
it can be from any of the levels in the tree. The
benefits of this is multi-fold. First, this allows the
model to be flexible in predicting labels at a lower
(or higher) level based on its confidence. For ex-
ample, the model may have enough evidence to la-
bel “san francisco” a CITY, however, for “georgia”
it may not have enough context to discriminate be-
tween STATE or COUNTRY, but could confidently
label it a PLACE. Secondly, this also allows us to
design the features over multiple levels of label gran-
ularity, which leads to a more expressive model. Ex-
pectation constraints can be specified over this ex-
panded set of features, at any level of the taxonomy.

In order to incorporate the nested labels into our
model, we observe that every feature that fires for
a non-leaf label should also fire for all descendants
of that label, e.g. every feature that is active for la-
bel PLACE should also be active for a label CITY,
COUNTRY, etc 3. Following the observation, for ev-
ery feature gk(x, 〈tj , uj , yj〉) that is active, we also

3Note that this argument works similarly for the taxonomy
represented as a DAG, where the descendants are of a node are
all nodes reachable from it. We do not explore this structure of
the taxonomy in this paper.

fire ∀y′ ∈ desc(yj), gk(x, 〈tj , uj , y′〉)4. The same
procedure is applied to the constraints.

4 Features

Our learning algorithm relies on constraints g′ as
supervision to extract entities, but even though con-
straints are designed to be generic they do not cover
the whole dataset. The learning algorithm needs
to propagate the supervision to instances where the
constraints are not applicable, guided by the set
of feature functions g. More expressive and rele-
vant features will provide better propagation. Even
though these feature functions represent the “unsu-
pervised” part of the model (in that they are only
dependent on the unlabeled sequences), they play
an important role in propagating the supervision
throughout the dataset.

4.1 Sequence and Segment Features

Our first set of features are the commonly used
features employed in linear-chain sequence models
such as CRFs and HMMs. These consist of factors
between each token and its corresponding label, and
neighboring labels. They also include transition fac-
tors between the labels. These are local feature func-
tions that are defined only over pairs of token-wise

4This example describes when gk(yj−1,x, sj) ignores
yj−1. For the usual case gk(yj−1,x, sj), features between all
pairs of descendants of yj−1 and yj are enabled.
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Proper Nouns Common Nouns

PLACE

CITY STATE

COUNTRY CONTINENT

AIRPORT ZIPCODE

PERSON

MANUFACTURER

PRODUCTNAME

MEDIATITLE

EVENT

PRODUCT and BUSINESS

FINANCE MEDIA

EDUCATION APPAREL

TRAVEL AUTO

TECHNOLOGY RESTAURANT

ORGNAME

AIRLINE SPORTSLEAGUE APPAREL AUTO

MEDIA TECHNOLOGY FINANCE LODGING

EDUCATION SPORTSTEAM RESTAURANT

OCCASION

Figure 2: Label Taxonomy: The set of labels that are used are shown grouped by the parent label. PRODUCT and
BUSINESS labels have been merged for brevity, i.e. there are two labels of each child label shown (e.g. PRODUCT:
AUTO and BUSINESS: AUTO). An additional label OTHER is used for the tokens that do not belong to any entities.

labels yj and yj−1. To utilize the semi-Markov rep-
resentation that allows features over the predicted
segmentation, we add the segment length and pre-
fix/suffix tokens of the segment as features.

4.2 Segment Clusters

Although the sequence and segment features cap-
ture a lot of useful information, they are not suffi-
cient for propagation. For example, if we have a
constraint about the token “london” being a CITY,
but not about “boston”, the model can only rely on
similar contexts between ‘london” and ‘boston” to
propagate the information. To allow more compli-
cated propagation to occur, we use features based
on a clustering of segments.

The segment cluster features are based on simi-
larity between segments from English sentences. A
large corpus of English documents were taken from
web, from which 5.1 billion unique sentences were
extracted. Using the co-occurrence of segments in
the sentences as a distance measure, K-Means is
used to identify clusters of segments as described in
(Pantel et al., 2009). The cluster identity of each seg-
ment is added as a feature to the model, capturing
the intuition that segments that appear in the same
cluster should get the same label.

4.3 Topic Model

Most of the ads lie in separate domains with
very little overlap, for example travel and electron-
ics. Additional information about the domain can
be very useful for identifying entities in the ad. For

example, consider the token “amazon”. It may be
difficult to discern whether the token refers to the
geographical region or the website from just the fea-
tures in the model, however given that the domain
of the ad is travel (or conversely, electronics), the
choice becomes easier.

The problem of domain identification is often
posed as a document classification task, which re-
quires labeled data to train and thus is not applica-
ble for our task. Additionally, we are not concerned
with accurately specifying the exact domain of each
ad, instead any information about similarity between
ads according to their domains is helpful. This kind
of representation can be obtained in an unsupervised
fashion by using topic cluster models (Steyvers and
Griffiths, 2007; Blei et al., 2003). Given a large
set of unlabeled documents, topic models define a
distribution of topics over each document, such that
documents that are similar to each other have similar
topic distributions.

The LDA (Blei et al., 2003) implementation of
topic models in the Mallet toolkit (McCallum, 2002)
was used to construct a model with 1000 topics for
a dataset containing 3 million ads. For each ad, the
discrete distribution over the topics, in conjunction
with each possible label, was added as a feature.
This captures a potential for each label given an ap-
proximation of the ad’s domain captured as topics.
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5 Constraints

Constraints are used to inject light supervision
into the learning algorithm and are defined as tar-
gets u for expectations of features G′ over the data.
Any feature that can be included in the model can be
used as a constraint. This allows us to capture a va-
riety of different forms of domain knowledge, some
of which we shall explore in this section.

Labeled data xl, sl can be incorporated as a spe-
cial case when constraints have a target expectation
of 1.0 for the features that are defined only for the
sequence xl and with segmentation sl. This allows
us to easily use labeled data in form of constraints,
but in this work we do not include any labeled data.
A more interesting case is that of partial labeling,
where the domain expert may have prior knowledge
about the probability that certain tokens and/or con-
texts result in a specific label. These constraints
can cover more instances than labeled data, however
they only provide partial and stochastic labels. All
of the constraints described in this section are also
included as simple features.

Many different methods have been suggested in
recent work for finding the correct target values for
the feature expectations. First, if ample labeled data
is available, features expectations can be calculated,
and assumptions can be made that the same expec-
tations hold for the unlabeled data. This method
cannot be applied to our work due to lack of la-
beled data. Second, for certain constraints, the prior
knowledge can be used directly to specify these val-
ues. Third, if the constraints are an output of a
previous machine learning model, we can use that
model’s confidence in the prediction as the target
expectation of the constraint. Finally, a search for
the ideal values of the target expectations can be
performed by evaluating on small evaluation data.
Our target values for feature expectations were set
based on domain knowledge, then adjusted manu-
ally based on minimal manual examination of ex-
amples on a small held-out data set.

5.1 Dictionary-Based

Dictionary constraints are the form of constraints
that apply to the feature between an individual token
and its label. For a set of tokens in the dictionary, the
constraints specify which label they are likely to be.

Dictionaries can be easily constructed using various
sources, for example product databases, lexicons,
manual collections, or predictions from other mod-
els. These dictionary constraints are often used to
bootstrap models (Agichtein and Ganti, 2004; Cani-
sius and Sporleder, 2007) and have also been used in
the ads domain (Li et al., 2009). For our application,
we rely on dictionary constraints from two sources.

First, the predictions of a previous model are used
to construct a dictionary. A model for entity extrac-
tion is trained on a large amount of labeled search
query data. The domain and style of web queries
differs from advertisements, but the set of labels is
essentially the same. The supervised query entity
extraction model is used to infer segments and la-
bels for the ads domain, and each of the predicted
segments are added to the dictionary of the corre-
sponding predicted label. Even though the predic-
tions of the model are not perfect (see Section 6.1)
the predictions of some of the labels are of high pre-
cision, and thus can be used for supervision in form
of noisy dictionary constraints.

The second source of prior information for dictio-
nary constraints are external databases. Lists of vari-
ous types of places can be obtained easily, for exam-
ple CITY, COUNTRY, STATE, AIRPORT, etc. Ad-
ditionally, product databases available internally to
our research group are used for MANUFACTURERS,
BRANDS, PRODUCTS, MEDIATITLE, etc. Some of
these databases are noisy, and the constraints based
on them are given lower target expectations.

5.2 Pattern-Based

Prior knowledge can often be easily expressed as
patterns that appear for a specific domain. Pattern
based matching has been used to express supervision
for information extraction tasks (Califf and Mooney,
1999; Muslea, 1999). The usual use case involves
a domain expert specifying a number of “prototyp-
ical” patterns, while additional patterns are discov-
ered based on these initial patterns.

We incorporate noisy forms of patterns as con-
straints. Simple regular expression based patterns
were used to identify and label segments for a few
domains (e.g. “flights to {PLACE}” and “looking
for {PRODUCT}?”). We do not employ a pattern-
discovery algorithm for finding other contexts; the
model propagates these labels, as before, using the
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features of the rest of the model. However if the
output of a pattern-discovery algorithm is available,
it can be directly incorporated into the model as ad-
ditional constraints.

5.3 Domain-Based

A number of label-independent constraints are
also added to avoid unrealistic segmentation predic-
tions. For example, an expectation over segment
lengths was included, which denotes that the seg-
ment length is usually 1 or 2, and almost never more
than 6. A constraint is also added to avoid segments
that overlap the separator token between title and
abstract by ensuring that the segment that includes
the separator token is always of length 1 and of la-
bel OTHER. Finally, an additional constraint ensures
that the label OTHER is the most common label.

6 Results
The feature expectations of the model are cal-

culated with modifications to an open source
semi-CRF package5. We collect two datasets of
ad creatives randomly sampled from Yahoo!’s ads
database: a smaller dataset contains 14k ads and a
larger dataset of 42k ads. The ads were not restricted
to any particular domain (such as travel, electronics,
etc.). The average length of the complete ad text
was ∼14 tokens. Preprocessing of the text involved
lower-casing, basic cleaning, and stemming.

The training time for each iteration through the
data was ∼90 minutes for the smaller dataset and
∼360 minutes for the larger dataset. Inference over
the dataset, using Viterbi decoding for semi-CRFs,
took a total of ∼8 and ∼32 minutes. The initial
learning rate η is set to 10.0.

6.1 Discussion

We compare our approach to a baseline “Dictio-
nary” system that deterministically selects a label
based on the dictionaries described in Section 5.1.
A segment is given a label corresponding to the dic-
tionary it appears in, or OTHER if it does not ap-
pear in any dictionary. In addition, we compare to
an external supervised system that has been trained
on tens-of-thousands of manually-annotated search
queries that use the same taxonomy (the same sys-
tem as used in Section 5.1 to derive dictionaries).

5Available on http://crf.sourceforge.net/

This CRF-based model contains mostly the same
features as our unsupervised system, and approxi-
mates what a fully supervised system might achieve,
although it is trained on search queries. Results for
our approach and these two systems are presented
in Table 1. Our evaluation data consists of 2,157
randomly sampled ads that were manually labeled
by professional editors. This labeled data size was
too small to sufficiently train a supervised semi-CRF
model that out-performed the dictionary baseline for
our task (which consists of 45 potential labels).

We measure the token-wise accuracy and macro
F-score over the manually labeled dataset. Typi-
cally, these metrics measure only exact matches be-
tween the true and the predicted label, but this leads
to cases where the model may predict PLACE for a
true CITY. To allow a “partial credit” for these cases,
we introduce “weighted” version of these measures,
where a predicted label is given 0.5 credit if the true
label is its direct child or parent, and 0.25 credit if
the true label is a sibling. Our F-score measures the
recall of all true labels except OTHER and similarly
the precision of all predicted labels except OTHER.
We focus on these labels because the OTHER la-
bel is mostly uninformative for downstream tasks.
The token-wise accuracy over all labels (including
OTHER) is included as “Overall Accuracy”.

Our method significantly outperforms the base-
line dictionary method while approaching the results
obtained with the sophisticated supervised model.
Overall accuracy is 50% greater than the dictionary
baseline, and comes within 10% of the supervised
model6. Increasing unlabeled data from 14k to 42k
ads provides an increase in overall accuracy and
non-OTHER precision, but somewhat reduces recall
for the remaining labels. We also include the F2-
score which gives more weight to recall, because
we are interested in extracting informative labels for
downstream models (which may be able to com-
pensate for a lower precision in label prediction).
Our model trained on 14k samples out-performs the
query-based supervised model in terms of F2, which
is promising for future work that will incorporate
predicted labels in ad retrieval and ranking systems.

6Comparisons and trends for normal and weighted measures
are consistent throughout the results.
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Table 1: Evaluation: Token-wise accuracy and F-score for the methods evaluated on labeled data (Normal / Weighted)

Metric Dictionary Our Method (14k) Our Method (42k) Query-based Sup. Model
Overall Accuracy 0.454 / 0.466 0.596 / 0.627 0.629 / 0.649 0.665 / 0.685

non-OTHER Recall 0.170 / 0.205 0.329 / 0.412 0.271 / 0.325 0.286 / 0.342
non-OTHER Precision 0.136 / 0.163 0.265 / 0.333 0.297 / 0.357 0.392 / 0.469

F1-score 0.151 / 0.182 0.293 / 0.368 0.283 / 0.340 0.331 / 0.395
F2-score 0.162 / 0.195 0.313 / 0.393 0.276 / 0.331 0.303 / 0.361

7 Related Work

Extraction of structured information from text is
of interest to a large number of communities. How-
ever, in the ads domain, the task has usually been
simplified to that of classification or ranking. Pre-
vious work has focused on retrieval (Raghavan and
Iyer, 2008), user click prediction (Shaparenko et
al., 2009; Richardson et al., 2007; Ciaramita et al.,
2008), ad relevance (Hillard et al., 2010) and bounce
rate prediction (Sculley et al., 2009). As far we
know, our method is the only one that aims to solve a
much more complex task of segmentation and entity
extraction from ad creatives. Supervised methods
are a poor choice to solve this task as they require
large amounts of labeled ads, which is expensive,
time-consuming and noisy. Most semi-supervised
methods also rely on some labeled data, and scale
badly with the size of unlabeled data, which is in-
tractable for most ad databases.

Considerable research has been undertaken to ex-
ploit forms of domain knowledge other than la-
beled data to efficiently train a model while utiliz-
ing the unlabeled data. These include methods that
express domain knowledge as constraints on fea-
tures, which have shown to provide high accuracy
on natural language datasets (Chang et al., 2007;
Chang et al., 2008; Mann and McCallum, 2008;
Bellare et al., 2009; Singh et al., 2010). We use
the method of alternating projections for constraint-
driven learning (Bellare et al., 2009) since it spec-
ifies constraints on feature expectations instead of
less intuitive constraints on feature parameters (as
in (Chang et al., 2008)). Additionally, the alternat-
ing projection method is computationally more effi-
cient than Generalized Expectation (Mann and Mc-
Callum, 2008) and can be applied in an online fash-
ion using stochastic gradient.

Our approach is most similar to (Li et al., 2009),
which uses semi-supervised learning for CRFs to ex-
tract structured information from user queries. They
also use a constraint-driven method that utilizes an
external data source. Their method, however, relies
on labeled data for part of the supervision while our
method uses only unlabeled data. Also, evaluation
was only shown for a small domain of user queries,
while our work does not restrict itself to any specific
domain of ads for evaluation.

8 Conclusions
Although important for a number of tasks in spon-

sored search, extraction of structured information
from text advertisements is not a well-studied prob-
lem. The difficulty of the problem lies in the expen-
sive, time-consuming and error-prone labeling pro-
cess. In this work, the aim was to explore machine
learning methods that do not use labeled data, re-
lying instead on light supervision specified as con-
straints on feature expectations. The results clearly
show this minimally-supervised method performs
significantly better than a dictionary based baseline.
Our method also approaches the performance of a
supervised model trained to extract entities from
web search queries. These findings strongly suggest
that domain knowledge expressed in forms other
than directly labeled data may be preferable in do-
mains for which labeling data is unsuitable.

The most important limitation lies in the fact
that specifying the target expectations of constraints
is an ad-hoc process, and robustness of the semi-
supervised learning method to noise in these target
values needs to be investigated. Further research
will also explore using the extracted entities from
advertisements to improve downstream sponsored
search tasks.
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