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Abstract

Conditional random fields and other graphical
models have achieved state of the art results in
a variety of NLP and IE tasks including coref-
erence and relation extraction. Increasingly,
practitioners are using models with more com-
plex structure—higher tree-width, larger fan-
out, more features, and more data—rendering
even approximate inference methods such as
MCMC inefficient. In this paper we pro-
pose an alternative MCMC sampling scheme
in which transition probabilities are approx-
imated by sampling from the set of relevant
factors. We demonstrate that our method con-
verges more quickly than a traditional MCMC
sampler for both marginal and MAP inference.
In an author coreference task with over 5 mil-
lion mentions, we achieve a 13 times speedup
over regular MCMC inference.

1 Introduction

Conditional random fields and other graphical mod-
els are at the forefront of many natural language
processing (NLP) and information extraction (IE)
tasks because they provide a framework for discrim-
inative modeling while succinctly representing de-
pendencies among many related output variables.
Previously, most applications of graphical models
were limited to structures where exact inference
is possible, for example linear-chain CRFs (Laf-
ferty et al., 2001). More recently there has been
a desire to include more factors, longer range de-
pendencies and larger numbers of more sophisti-
cated features; these include skip-chain CRFs for
named entity recognition (Sutton and McCallum,

2004), higher-order models for dependency pars-
ing (Carreras, 2007), entity-wise models for coref-
erence (Culotta et al., 2007) and global models of
relations (Yao et al., 2010). The increasing sophis-
tication of these individual NLP components com-
pounded with the community’s desire to model these
tasks jointly across cross-document considerations
has resulted in graphical models for which infer-
ence is computationally prohibitive. Even popu-
lar approximate inference techniques such as loopy
belief propagation and Markov chain Monte Carlo
(MCMC) may be prohibitive.

MCMC algorithms such as Metropolis-Hastings
(MH) are usually efficient for graphical models be-
cause the only factors needed to score a proposal
are those touching the changed variables. How-
ever, if the model variables have high degree (neigh-
bor many factors), if computation of factor scores
is slow, or if each proposal modifies a substantial
number of variables (e.g. to satisfy deterministic
constraints, such as transitivity in coreference), then
even MH can be prohibitively slow. For example,
the seemingly innocuous proposal changing the type
of a single entity requires scoring a linear number
of factors (in the number of mentions of that entity).
Often, however, the factors are somewhat redundant,
for example, not all the mentions of the “USA” en-
tity need to be examined to confidently conclude that
it is a COUNTRY.

In this paper we propose an approximate MCMC
framework that facilitates efficient inference in high-
degree graphical models. In particular, we approxi-
mate the acceptance ratio in the Metropolis-Hastings
algorithm by replacing the exact model scores with



a stochastic approximation. We propose two strate-
gies for this approximation: static uniform sam-
pling and adaptive confidence-based sampling, and
demonstrate significant speedups on synthetic and
real-world information extraction tasks.

MCMC is a popular method for dealing with
large, dense graphical models for tasks in NLP and
information extraction (Richardson and Domingos,
2006; Poon and Domingos, 2006; Poon et al., 2008;
Singh et al., 2009; Wick et al., 2009). Popular prob-
abilistic programming packages also rely on MCMC
for inference and learning (Richardson and Domin-
gos, 2006; McCallum et al., 2009), and parallel ap-
proaches to MCMC have also been recently pro-
posed (Singh et al., 2011; Gonzalez et al., 2011). A
generic method to speed up MCMC inference could
have significant applicability.

2 MCMC for Graphical Models

Factor graphs represent the joint distribution over
random variables by a product of factors that make
the dependencies between the random variables ex-
plicit. Each (log) factor f ∈ F is a function that
maps an assignment of its neighboring variables to a
real number. The probability of an assignment y to
the random variables, defined by the set of factors F,
is P (y) = expψ(y)

Z where ψ(y) =
∑

f∈F f(y) and
Z =

∑
y expψ(y).

Often, computing marginal estimates of a model
is computationally intractable due to the normaliza-
tion constant Z, while maximum a posteriori (MAP)
is prohibitive due to the search space. Markov chain
Monte Carlo (MCMC) is an important tool for ap-
proximating both kinds of inference in these mod-
els. A particularly successful MCMC method for
graphical model inference is Metropolis-Hastings
(MH). Since sampling from the true model P (y) is
intractable, MH instead uses a simpler distribution
q(y′|y) that conditions on the current y and proposes
a new state y′ by modifying a few variables. This
new assignment is then accepted with probability
α = min

(
1, P (y′)

P (y)
q(y|y′)
q(y′|y)

)
. Computing this accep-

tance probability is usually highly efficient because
the partition function cancels, as do all the factors
in the model that do not neighbor changed variables.
MH can also be used for MAP inference; the accep-
tance probability is modified to include a tempera-

ture term: α = min
(
1,
(
P (y′)
P (y)

)τ)
. If a cooling

schedule is implemented for τ then the MH sampler
for MAP inference can be seen as an instance of sim-
ulated annealing (Bertsimas and Tsitsiklis, 1993).

3 Monte Carlo MCMC

The benefit of MCMC lies in its ability to leverage
the locality of the proposal. In particular, evalua-
tion of each sample requires computing the score of
all the factors that are involved in the change, i.e.
all factors that neighbor any variable in the set that
has changed. This evaluation becomes a bottleneck
for tasks in which a large number of variables is in-
volved in each proposal, or in which the model con-
tains very high-degree variables, resulting in large
number of factors, or in which computing the fac-
tor score involves an expensive computation, such
as string similarity. Many of these arise naturally
when performing joint inference, or representing un-
certainty over the whole knowledge-base.

Instead of evaluating the log-score ψ of the model
exactly, this paper proposes a Monte Carlo estimate
of the log-score. In particular, if the set of factors
for a given proposed change is F, we use sampled
subset of the factors S ⊆ F as an approximation of
the model score. Formally, ψ(y) =

∑
f∈F f(y) =

|F| · EF [f(y)] and ψS(y) = |F| · ES [f(y)]. We use
ψS in the acceptance probability α to evaluate each
sample. Since we are using a stochastic approxima-
tion to the model score, in general we expect to need
more samples to converge. However, since evaluat-
ing each sample will be much faster (O(|S|) instead
of O(|F|)), we expect sampling overall to be faster.
In the next sections we describe two strategies for
sampling the set of factors S.

3.1 Uniform Sampling

The most direct approach for subsampling the set
of F is to perform uniform sampling. In particular,
given a proportion parameter 0 < p ≤ 1, we select
a random subset Sp ⊆ F such that |Sp| = p · |F|.
Since this approach is agnostic as to the actual fac-
tors scores, ESp [f ] ≡ EF[f ]. A low p leads to fast
evaluation, however it may require a large number
of samples due to the substantial approximation. On
the other hand, although a high p will converge with
fewer samples, evaluating each sample will be slow.



3.2 Confidence-Based Sampling

Selecting the best value for p is difficult, requiring
analysis of the graph structure, and statistics on the
distribution of the factors scores; often a difficult
task for real-world applications. Further, the same
value for p can result in different levels of approxi-
mation for different proposals, either unnecessarily
accurate or restrictively noisy. We would prefer a
strategy that adapts to the distribution of the scores.

Instead of sampling a fixed proportion, we can
sample until we are confident that the current set of
samples Sc is an accurate estimate of the true mean
of F. In particular, we maintain a running count
of the sample mean ESc [f ] and variance σSc , us-
ing them to compute a confidence interval IS around
the estimate of the mean. Since the number of sam-
pled factors Sc could be a substantial fraction of the
set of factors F,1 we also incorporate finite pop-
ulation control (fpc) in our sample variance. We
use the variance σ2Sc = 1

|Sc|−1
∑

f∈Sc (f − ESc [f ])
2

to compute the interval ISc = 2z
σSc√
|Sc|

√
|F|−|Sc|
|F|−1 ,

where z = 1.96, i.e. the 95% confidence interval.
We iteratively sample factors without replacement
from F, until the confidence interval falls below a
user specified threshold i. For proposals that contain
high-variance factors, this strategy examines a large
number of factors, while proposals that involve sim-
ilar factors will result in fewer samples. Note that
this user-specified threshold is agnostic to the graph
structure and the number of factors, and instead di-
rectly reflects the distribution of the factor scores.

4 Experiments

4.1 Synthetic Entity Classification

Consider the task of classifying entities into a set of
types, for example, POLITICIAN, VEHICLE, CITY,
GOVERMENT-ORG, etc. For knowledge base con-
struction, this prediction often takes place on the
entity-level, as opposed to the mention-level com-
mon in traditional NLP. To evaluate the type at the
entity-level, the scored factors examine features of
all the entity mentions of the entity, along with the
labels of all relation mentions for which it is an ar-
gument. See Yao et al. (2010) and Hoffmann et al.

1Specifically, the fraction may be higher than 5%

(2011) for examples of such models. Since a sub-
set of the mentions can be sufficiently informative
for the model, we expect our stochastic MCMC ap-
proach to work well.

We use synthetic data for such a model to evaluate
the quality of marginals returned by the Gibbs sam-
pling form of MCMC. Since the Gibbs algorithm
samples each variable using a fixed assignment of
its neighborhood, we represent generating a single
sample as classification. We create models with a
single unobserved variable (entity type) that neigh-
bors many unary factors, each representing a single
entity- or a relation-mention factor. Our synthetic
models consist of random weights assigned to each
of the 100 factors (generated from N(0.5, 1) for the
true label, and N(−0.5, 1) for the false label).

We evaluate the previously described uniform
sampling and confidence-based sampling, with sev-
eral parameter values, and plot the L1 error to the
true marginals. We use the number of factors exam-
ined as a proxy for running time, as the effect of the
steps in sampling are relatively negligible. The error
in comparison to regular MCMC (p = 1) is shown
in Figure 1, with standard error bars averaging over
100 models. Initially, as the sampling approach is
made more stochastic (lowering p or increasing i),
we see a steady improvement in the running time
needed to obtain the same error tolerance. How-
ever, the amount of relative improvements slows as
stochasticity is increased further, in fact for extreme
values (i = 0.05, p = 0.1) the chains may perform
worse than regular MCMC.
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Figure 1: Synthetic Entity Classification
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Figure 2: Entity Resolution over 5 million mentions.

4.2 Large-Scale Author Coreference

Author coreference, the problem of clustering men-
tions of research paper authors into the real-world
authors to which they refer, is an important step for
performing meaningful bibliometric analysis. It is
an instance of entity resolution, a clustering prob-
lem in which neither the identities or number of
underlying entities is known. In this paper, the
graphical model for entity resolution consists of ob-
served mentions (mi), and pairwise binary variables
between pairs of mentions (yij) which represent
whether the mentions are coreferent. A local fac-
tor for each yij has a high score if mi and mj are
similar, and is instantiated only when yij = 1. Thus,
ψ(y) =

∑
e

∑
mi,mj∈e f(yij). The set of possible

worlds consists of all settings of the y variables such
that they are consistent with transitivity, i.e. the bi-
nary variables directly represent a valid clustering
over the mentions. Our proposal function selects a
random mention, and moves it to a random entity,
changing all the pairwise variables with mentions in
its old and new entities. Thus, evaluation of such a
proposal function requires scoring a number of fac-
tors linear in the size of the entities. However, the
mentions are highly redundant, and observing only
a subset of mentions can be sufficient.

Our dataset consists of 5 million BibTex entries
from DBLP from which we extract author names,
and features based on similarity between first, last
names, and similarity among publication venues
and co-authors. This DBLP dataset contains many

Method Factors Examined Speedup
Baseline 1,395,330,603 1x
Uniform
p = 0.5 689,254,134 2.02x
p = 0.1 206,157,705 6.77x
p = 0.02 142,689,770 9.78x
Variance
i = 0.1 1,012,321,830 1.38x
i = 1 265,327,983 5.26x
i = 10 179,701,896 7.76x
i = 100 106,850,725 13.16x

Table 1: Speedups on DBLP to reach 80% B3 F1

large, “populous” clusters, making the evaluation of
MCMC proposals computationally expensive. We
also include some mentions that are labeled with
their true entities, and evaluate accuracy on this sub-
set as inference progresses. We plot BCubed F1,
introduced by Bagga and Baldwin (1998), versus
the number of factors examined (Figure 2). We
also show accuracy in Table 1. We observe con-
sistent speed improvements as stochasticity is in-
creased. Our proposed method achieves substan-
tial saving on this task, with a 13.16x speedup using
the confidence-based sampler and 9.78x speedup us-
ing the uniform sampler. Our results also show that
using extremely high confidence intervals and low
sampling proportion can result in convergence to a
low accuracy.

5 Conclusions

Motivated by the need for an efficient inference tech-
nique that can scale to large, densely-factored mod-
els, this paper considers a simple extension to the
Markov chain Monto Carlo algorithm. By observing
that many graphical models contain substantial re-
dundancy among the factors, we propose a stochas-
tic evaluation of proposals that subsamples the fac-
tors to be scored. Using two proposed sampling
strategies, we demonstrate improved convergence
for marginal inference on synthetic data. Further, we
evaluate our approach on a large-scale, real-world
entity resolution dataset, obtaining a 13x speedup on
a dataset containing 5 million mentions.
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