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Abstract Both common coupling and pointer variables can exert a deleterious effect on
the quality of software. The situation is exacerbated when global variables are assigned to
pointer variables, that is, when an alias to a global variable is created. When this occurs, the
number of global variables increases, and it becomes considerably harder to compute quality
metrics correctly. However, unless aliasing is taken into account, variables may incorrectly
appear to be unreferenced (neither defined nor used), or to be used without being defined.
These ideas are illustrated by means of a case study of common coupling in the Linux kernel.

Keywords Common coupling . Aliasing . Pointer variables . Linux . Global variables .

Definition–use analysis

1 Introduction

The goal of software engineering is to produce high-quality maintainable software. But
there is little agreement regarding how quality and maintainability should be measured,
and whether they can be measured directly. Over the years, various indirect measures have
therefore been proposed. The degree of common coupling is one of them: Significant common
coupling should be avoided, so low levels of common coupling are taken to indicate high
quality and maintainability (Stevens et al., 1974). Such metrics are especially useful for the
comparison of contending software development practices, such as open source vs. closed
source.

Common coupling refers to the use of global variables. Using global variables is bad prac-
tice because it violates the principles of encapsulation, information hiding, and abstraction
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(Myers, 1974; Yourdon and Constantine, 1979). A global variable is volatile, in the sense
that its value may be changed in unpredictable ways, due to side effects of called functions.

Using global variables is bad practice; allowing pointer variables to point to global vari-
ables is even worse. When global variables are used directly, it is relatively straightforward to
find all instances of these global variables and check their effect. But with pointer variables,
a global variable may have several aliases. This makes it impractical to track the possible
interactions among different modules, and increases the risk of undesirable effects.

We demonstrate the problems that stem from using pointers to global variables by means
of a case study of common coupling in the Linux kernel.

The remainder of this paper is organized as follows: In Section 2 we discuss coupling
issues, especially global variables and common coupling. The effects of pointer variables on
common coupling are described in Section 3. The Linux case study is presented in Section
4, and the results of the case study in Section 5. Our conclusions appear in Section 6.

2 Coupling of software modules

A successful software project is one that meets its specifications within predefined budget
and time constraints. This criterion for success is applicable to traditional closed-source
software development, and has been measured for many thousands of projects. In fact, such
measurements are the basis for the claim that the software industry is in a crisis; studies
routinely show that the majority of projects fail to meet their targets (Jones, 1995; Johnson
et al., 2001).

Regrettably, this straightforward metric cannot be applied to open-source software
projects, because they typically have no detailed specifications, no budget, and no dead-
lines. Therefore, indirect metrics have to be found. Given the availability of the source code,
it is natural to consider metrics that are based on the code itself, that is, metrics for code
quality. These have the additional appeal of being quantitative, objective, and amenable to
mechanized evaluation.

One such metric is the degree of coupling found in the code. Coupling between software
modules measures the degree to which they are dependent on each other. One of the basic
tenets of software engineering is that modules should be only weakly coupled together,
because this promotes easier maintenance and reuse (Stevens et al., 1974; Myers, 1974;
Offutt et al., 1993); contrariwise, strong coupling makes modules harder to understand and
increases the propensity for errors (Binkley and Schach, 1998; Rilling and Klemola, 2003).

There are many different types of coupling that can occur between software modules
(Offutt et al., 1993). Coupling means that one module depends on the other, typically in
the form of using data that are produced by the other module. The distinctions are based
on whether passed data are also used for control or not, and whether they are passed uni-
directionally or bi-directionally.

Some form of coupling is obviously needed in order to allow the modules to work together
as parts of a single application. But not all forms of coupling are equal. In 1974, Stevens,
Myers, and Constantine published an ordinal scale of coupling (Stevens et al., 1974). The
second worst form of coupling was what they called “common coupling”; the term refers to
the use of global (shared) variables, harking back to the COMMON keyword from FORTRAN.
It is widely agreed that common coupling should be avoided wherever possible.

Using global variables is bad practice mainly because global variables allow for side
effects. Consider a module that uses a global variable g, and calls a function f() from
another module. When the function returns, the value of g may have changed. Moreover,
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future changes to f() may cause new and unexpected behavior of g. Consequently, the
programmer cannot rely on g remaining consistent, and needs to handle it with extreme care.
Another reason that common coupling is considered bad practice is that it is susceptible to
clandestine increase, where the coupling of a given module increases without the module
itself being modified in any way, just because other modules have been modified (Schach
et al., 2003).

3 The effect of pointer variables on common coupling

Programming languages such as C allow for pointer variables that point to other variables.
This mechanism can be used to create aliases; a given variable can be accessed using its
original name, and also through pointer variables that point to it.

Although pointer variables have some important applications in dynamic data structures,
their indiscriminate use causes many problems. Because these pointers are variables, they
can be assigned at runtime. Accordingly, a pointer may point to different variables at different
times in the execution of the program. This makes it extremely hard, or even impossible, to
perform a static analysis of the behavior of the program.

One alternative is to utilize conservative approaches. For example, all modules that access
a global data structure in some way will be considered to be common coupled, even if there
are actually subsets of modules that do not really depend on each other. For example, a global
data structure may consist of two fields, x1 and x2. One set of modules may access only x1
and another set may access only x2. In such a case, claiming that the modules of the two
sets are common coupled is inaccurate.

In other words, in order to determine the extent of common coupling (and, hence, measure
program quality indirectly), we need to be able to identify every instance of a global variable.
The presence of pointer variables can make such a determination difficult or even impossible.

We now illustrate these ideas with a case study.

4 Case study: The Linux kernel

Tabulating the degree of common coupling has been used to assess the quality of the code
in the Linux operating system kernel, and how it changes with time. The original study by
Schach et al. found that the number of instances of common coupling grows exponentially
with version number (Schach et al., 2002). A follow-up by Yu et al. (2004) found that much
of the common coupling was of an especially bad type that coupled kernel modules to
non-kernel modules; this “category-5 global coupling” is described in Section 5.4.

A deficiency of these studies is that they were based on a lexical analysis of the Linux
source code. In other words, they identified references to global variables only if the same
name was used. However, the Linux kernel is rife with instances of references to global
variables using pointer variables. To see how presence of these aliases affected the accuracy
of these studies, consider the process descriptors in Linux.

The most heavily used global variables in Linux are the process descriptors. There is a
process descriptor for each process in the system. It resides in an 8-KB block of memory that
also holds the kernel stack of the process. This memory area is allocated dynamically when
the process is created. Accordingly, there is no pre-defined array of process descriptors, as
there was in early versions of Unix.
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Fig. 1 Pointers that can be used to access a process descriptor in Linux

In Linux, a process descriptor is a structure of type task struct, which has 105 fields.1

Process descriptors are most commonly accessed via global pointer variable current,
which points to the currently running process. (In reality, current is implemented as
a mask on the stack pointer register, based on the fact that the kernel stack and process
descriptor are co-located in the same memory block.) Of the 105 fields, 25 are pointers to
various data structures; of these, 9 are pointers to other instances of type task struct.
They are used to link the process descriptors into three separate data structures: the run-
queue (or some other list of processes), the pid (process identifier) hash table, and the tree
of process family relationships (connecting processes to their parent, siblings, and children).
The run-queue links, in particular, are used by the scheduler to traverse all the runnable
processes in the system and select one for execution. To complicate matters further, there are
at least 117 places in the code where current is copied to a local pointer that is then used
to access the current process descriptor. In short, there are many different ways to access
a process descriptor, all using pointers (Fig. 1). The earlier works on common coupling in
Linux (e.g., Yu et al., 2004) considered the use of only current itself.

A similar situation occurs for data structures that are pointed to by the process descriptor.
Sixteen of the fields of task struct are pointers to other structures, including ones that
describe the process’s memory layout and open files; some subfields are also pointers to
other structures. All these are often accessed via two or more levels of indirection using
current. But there are at least 148 cases where a local copy of a pointer is made, affecting
the access to 28 different subfields (of a total of 249 subfields that are defined). There are
also at least 24 cases of aliases to aliases (that is, a local pointer to current or to a field
is copied to another local pointer). Again, previous studies counted only the accesses using
current, and missed those that use a local copy.

1 This and other references to the Linux source code refer to kernel version 2.4.20, in order to be able to draw
comparisons with previous studies, especially (Yu et al., 2004).
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Table 1 Fields of
task struct referenced via
current

Referenced via current 89 Fields
Referenced only via aliasing 1 Fields
Never referenced 15 Fields
Total fields 105 Fields

5 Results

We investigated the common coupling induced by current. First, we looked solely at the
fields of task struct.2 Then we also considered the fields of the other types of structures
pointed to by fields of task struct. In each case, we considered the situation with and
without aliasing.

Our results were obtained as follows: First, we identified all 8384 instances of current
in the Linux source code. Second, each instance of current was examined independently
by two researchers and analyzed as described in the following subsections. Third, the few
discrepancies were easily resolved by the researchers concerned.

The reason why we decided to analyze the code manually, rather than use an automated
tool, was that we could not find a tool with the required fidelity. Some of the uses of
current in Linux are rather subtle, because it is used both as a pointer and as an identifier
of the current process. The problem of determining what each reference means is of course
exacerbated when aliases are concerned. In addition, we determined that nine researchers,
each working for just two hours a week, could complete the task in several months; building
a tool would take considerably longer.

5.1 Analysis of fields of task struct

In this subsection, we consider the fields of task struct referenced using current. As
shown in Table 1, when we consider just current itself and the fields to which it points,
89 of the 105 fields of task struct are referenced. An example of such a reference (to
field processor) is

current−>processor = 0;

If we also consider all aliases for current, a single additional field is referenced. These
are the statements in question:

struct task struct ∗tsk = current;
tsk−>vfork done = NULL;

Clearly, aliasing has a negligible impact on the fields of task struct accessed via
current.

5.2 Wider analysis

We now consider all fields referenced, directly or indirectly, by current. For example,
consider the statement

current−>fs−>altrootmnt = mnt;

2 In what follows, for brevity we use the informal terminology “fields of task struct” rather than the
more precise “fields of instances of type task struct.”
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Table 2 Subfields of current
referenced via current or via
an alias

Referenced via current 280 Subfields
Referenced only via aliasing 58 Subfields
Total referenced fields 338 Subfields

Here, pointer variable current points to pointer field fs in task struct. Pointer fs
is a pointer to a structure of type fs struct. Field altrootmnt is a field of a structure
of type fs struct and is set equal to mnt. In this case, the fields referenced are fs and
altrootmnt; we refer to such fields collectively as subfields of current.

Another example is

sig = fpu emulator cop1Handler(0, regs, &current
−>thread.fpu.soft);

In this example, current points to a struct of type task struct, which contains a
field thread, a struct of type thread struct. The latter has a field fpu that is a struct
of type fp status; this struct has a field soft. Here the subfields of current are
thread, fpu, and soft.

Table 2 shows the results when all subfields referenced using current and its aliases
are considered. The results in Table 2 incorporate those of Table 1. Now there are 58 fields
that are accessed only via aliases. In other words, over 17 percent of the 338 fields would
not be taken into account if aliasing were ignored.

5.3 Unreferenced and undefined global variables

Every instance of a variable in a program is either a definition of that variable (that is, a
change made to the value of that variable) or a use of that variable (that is, a utilization of
the current value of that variable).

An unreferenced field is one that is neither defined nor used in the statements we exam-
ined. As shown in Tables 3 and 2, following aliases exposes 58 additional subfields that are
not seen when references using only current are considered. They are therefore classi-
fied as unreferenced when aliasing is not considered. But even with aliasing there are six
unreferenced fields. These six fields fall into the following categories:

1. “Fields” that were found by mistake, due to outdated comments that mention fields that
no longer exist. There were four such fields.

2. A field (thread.usp) that exists, is mentioned in a comment, but is not referenced from
current. However, it could be referenced via some other mechanism of which we are
unaware.

3. A field (thread.esp) that occurs in only an assembler statement. We have set this
instance aside until we have done the necessary research into the nature of common cou-
pling between a second-generation language (assembler) and a third-generation language
(C).

Table 3 The effect of following aliases

Unreferenced Undefined Defined
Total fields
referenced

Without aliasing 64 78 202 278
With aliasing 6 89 249 338
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An undefined field is one that is used but not defined in the statements we examined. As
previously mentioned, without aliasing there were 64 unreferenced fields. Aliasing caused
22 of them to become undefined, and 36 to become defined. Also, without aliasing there were
78 undefined fields. Aliasing caused 11 of them to become defined. So, as shown in Table 3,
the number of unreferenced fields dropped from 64 to 6, and the number of undefined fields
increased from 78 to 89 (= 78 + 22 − 11).

5.4 Categorization of common coupling

Yu et al. (2004) categorized common coupling in kernel-based software. They set up five
categories of common coupling on the basis of the roles that the global variables play. As
explained in Section 5.3, every occurrence of a variable in the code can be classified as either
a definition or a use of that variable. Yu et al. (2004) applied this classification to occurrences
of global variables in the code, and then categorized the global variables as follows:

Category 1: Global variables that are defined in kernel modules but not used in any kernel
module. Global variables of this kind can be interpreted as “kernel outputs”; in object-
oriented terminology, they serve as “get” methods (accessors) for certain internal kernel
attribute. As such, their use is reasonable.

Category 2: Global variables that are defined in a single kernel module, and used in other
kernel (and non-kernel) modules. Such a global variable can be interpreted as a “get”
within the kernel in addition to being a “get” used by external modules. This is less
desirable than category 1, but is still reasonable.

Category 3: Global variables that are defined in several different kernel modules. This
causes the different kernel modules to depend on one other, and is therefore an undesir-
able usage mode.

Category 4: Global variables that are defined in non-kernel modules and used in kernel
modules. Although this creates a dependency of the kernel on non-kernel code, it may
be necessary as an input mode; in other words, this is similar to a “set” method (mutator)
of a kernel attribute. Although this is distinctly undesirable, it may be hard to avoid.

Category 5: Global variables that are defined in both kernel and non-kernel modules,
and used in kernel modules. This is an extreme form of coupling between kernel and
non-kernel code, and is highly undesirable.

Subsequently, Feitelson et al. observed that many of the subfields of current are global
variables that are neither defined nor used in the kernel. Accordingly, they added a sixth
category (Feitelson et al., 2007):

Category 0: Global variables that are neither defined nor used in the kernel.

In other words, there exists a six-way categorization of common coupling in kernel-
based software on the basis of definition–use analysis. Furthermore, the higher the category
number, the more undesirable is the resultant common coupling.

Without aliasing, 202 fields of current are defined, as shown in Table 3. The catego-
rization of these global variables is shown in Table 4. When aliasing is taken into account,
the number of defined fields increases to 249; their distribution is shown in Table 5.

We observe first that the number of fields increases by nearly 25 percent when aliasing is
taken into account, and second that the distribution of global variables among the categories
changes. In particular, some fields moved “up” to higher categories, which indicates a stronger
form of coupling, which is undesirable. Notably, in the initial categorization there were no
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Table 4 Results of categorizing
subfields of current without
any aliasing

Category 0 118 subfields (58.4%)
Category 1 5 subfields (2.5%)
Category 2 27 subfields (13.4%)
Category 3 0 subfields (0.0%)
Category 4 7 subfields (3.5%)
Category 5 45 subfields (22.3%)
Total 202 subfields (100.0%)

Table 5 Results of categorizing
subfields of current
incorporating aliasing

Category 0 154 subfields (61.8%)
Category 1 5 subfields (2.0%)
Category 2 27 subfields (10.8%)
Category 3 3 subfields (1.2%)
Category 4 7 subfields (2.8%)
Category 5 53 subfields (21.3%)
Total 249 subfields (100.0%)

Table 6 Re-categorization of fields of current as a result of considering references made via aliases

To
From UR UD 0 1 2 3 4 5

Unreferenced 6 22 33 0 3 0 0 0
Undefined 0 67 9 0 0 1 0 1
Category 0 0 0 112 0 0 0 2 4
Category 1 0 0 0 5 0 0 0 0
Category 2 0 0 0 0 24 2 0 1
Category 3 0 0 0 0 0 0 0 0
Category 4 0 0 0 0 0 0 5 2
Category 5 0 0 0 0 0 0 0 45

fields in category 3, but with aliasing three such fields were found. More significantly, the
number of fields in highly undesirable category 5 increased from 45 to 53, an increase of
over 17 percent. These changes are shown in more detail in Table 6.

5.5 References to global variables

We also counted the number of references (that is, individual occurrences in the code) to
each of the fields and subfields accessible from current. Comparing Tables 7 and 8, we
see that not only does the number of references increase when aliasing is taken into account,
the percentage of references in the different categories changes as well. And again, at least
for the kernel modules, the percentage of references made to fields belonging to undesirable
categories increased. In non-kernel modules, the percentage of references made to such fields
decreased slightly, whereas their absolute numbers increased significantly. This was due to
the introduction of many new subfields in category 0, which were found only with aliasing.
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Table 7 Results of analyzing
individual occurrences of fields
of current without aliasing

Kernel Non-kernel

Category 0 0 (0.0%) 1410 (23.3%)
Category 1 6 (1.4%) 18 (0.3%)
Category 2 96 (21.8%) 191 (3.2%)
Category 3 0 (0.0%) 0 (0.0%)
Category 4 18 (4.1%) 131 (2.2%)
Category 5 320 (72.7%) 4310 (71.1%)
Total 440 (100.0%) 6060 (100.0%)

Table 8 Results of analyzing
individual occurrences of fields
of current with aliasing

Kernel Non-kernel

Category 0 0 (0.0%) 1894 (25.3%)
Category 1 6 (1.0%) 18 (0.2%)
Category 2 96 (15.2%) 197 (2.6%)
Category 3 13 (2.1%) 10 (0.1%)
Category 4 16 (2.5%) 166 (2.2%)
Category 5 500 (79.2%) 5214 (69.5%)
Total 631 (100.0%) 7499 (100.0%)

5.6 Correlation with and without aliasing

Finally, we considered the effect of aliasing on each of the 839 modules. First, we looked at
the extent of aliasing. This is shown in Fig. 2, a scatter plot of the total number of direct or
indirect references to fields of current with and without considering aliasing.

Each dot corresponds to a single Linux file (module). The 717 files that lie on the diagonal
are not affected by aliasing, whereas the 122 files above the diagonal use aliasing. In 47 of
those files, the total number of fields referenced directly or indirectly increases when aliasing
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Table 9 Descriptive statistics for all 839 files

Fields referenced References to fields
Without aliasing With aliasing Without aliasing With aliasing

Maximum 27 30 298 376
Mean 2.80 3.08 8.07 9.83
Median 1 2 3 3
Minimum 0 1 0 1

Table 10 Descriptive statistics for the 122 files that use aliasing

Fields referenced References to fields
Without aliasing With aliasing Without aliasing With aliasing

Maximum 25 30 298 376
Mean 5.56 7.44 18.64 30.13
Median 3 6 6 16
Minimum 0 1 0 1

is taken into account; in 67 files, the total number of direct or indirect references to fields
increases; in 20 files, fields of current are referenced only as a consequence of aliasing.

Most files have only a few references, but a few files have many. In some cases, most
or even all the references are due to aliases. These results are reflected in Table 9, which
shows descriptive statistics for all 839 files, and in Table 10, which shows the corresponding
statistics for the 122 files that use aliasing. In each case, the range is large, the mean is small,
and the median is smaller than the mean, sometimes by a factor of 2 or 3. In other words, the
use of aliases is unevenly distributed.

Not only is aliasing unevenly distributed among files (modules), it is highly unevenly dis-
tributed among directories. There is a heavy use of aliases in the kernel subdirectory (the
“kernel” in Schach et al. (2002) and Yu et al. (2004)), some use inmm (memory management),
and some use in arch (architecture-specific code). In particular, many of the files that refer-
ence fields of current only via an alias are of the form arch/∗/kernel/semaphore.c.
There are exceedingly few uses of aliases in drivers, #include files, the file system (fs),
and the networking code.

Then we computed the correlation between common coupling in the absence of aliasing
and common coupling in the presence of aliasing. More precisely, because the data are so
unevenly distributed and because of the large number of identical values, we used the non-
parametric Spearman rank correlation coefficient, corrected for ties (Hollander and Wolfe,
1973).

First we considered all 839 files, and then we looked at the 122 files that use aliasing.
Our results appear Table 11. We conclude that in general those files that are highly common
coupled when aliasing is not considered are also highly common coupled when aliasing is

Table 11 Correlation between common coupling in the absence of aliasing and in the presence of aliasing

Fields referenced References to fields
Rank correlation P-value Rank correlation P-value

All 839 files 0.9172 < 0.0001 0.8785 < 0.0001
122 files that use aliasing 0.8409 < 0.0001 0.8339 < 0.0001
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considered. We deduce that the increases in common coupling reflected in Table 6 when
aliasing is considered are generally associated with those files that have high common
coupling when aliasing is not considered.

5.7 Implications for earlier research

As outlined at the start of Section 4, the case study in this paper extends and corrects the
results of the original case study by Schach et al. (2002) and the follow-up case study by
Yu et al. (2004). However, the results of this paper do not change the conclusions of Schach
et al. (2002) and Yu et al. (2004); on the contrary, they strengthen them.

Both Schach et al. and Yu et al. counted only common coupling induced by the global
variables themselves; they overlooked common coupling induced by aliases of those global
variables. Had they included this additional common coupling, the number of instances of
common coupling would have been even larger than what they reported; both papers focused
on directory kernel, where the use of aliases is the heaviest. Accordingly, the results
of this paper do not invalidate (Schach et al., 2002; Yu et al., 2004), but rather reinforce
their conclusion that, in the long term, Linux will become nonmaintainable unless Linux is
refactored to greatly reduce the amount of common coupling.

5.8 Threats to the validity of the Linux case study

In this case study, we have considered all fields referenced directly or indirectly by pointer
variable current. We have also considered aliases of current and of pointer variables
referenced directly or indirectly by current. However, we have not considered all of the
many aliases in Linux. A consequence is that there may be many more global variables than
those that we have identified.

We have identified a number of fields that apparently either are never referenced, or are
never defined. Some fields are initialized by copying. That is, sometimes a structure is created
as a copy of a preinitialized “standard” version of the structure. The structure as a whole is
copied, thereby defining the relevant fields. However, the only definition mechanism we have
considered is assignment. Accordingly, we may have miscategorized some global variables
as unreferenced.

6 Conclusions

It is widely agreed that common coupling, that is, the use of global variables, should be
minimized, and that pointer variables need to be handled with care. In this paper we have
demonstrated four examples of what can happen when pointer variables and common cou-
pling interact.

First, the creation of an alias for a global variable means that another global variable has
been created.3 That is, aliasing of global variables is antithetical to the goal of minimizing
the number of global variables in a program. This holds irrespective of whether the global
variable in question is a pointer variable (as is the case in this paper). However, the severity of
the situation is aggravated when the global variable in question is a pointer. When a pointer
to a structure is a global variable, then all the fields of that structure become global variables,

3 More precisely, what has been created is a reference to an existing global variable. From the viewpoint of a
programmer, however, the effect is as if a new global variable has been created.
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too. Creating an alias to the pointer results in even more global variables. That is, aliasing
can create global variables that do not exist in the absence of aliasing.

Second, if fields of the structure in question are themselves pointer variables, then the
items to which they point are also global variables, and this may be taken to any level. Again,
if there is aliasing as well, then the number of global variables can be further increased.

Third, the presence of aliasing means that considerable additional work may have to be
done in order to compute quality metrics correctly. These metrics include the number of
global variables and their categorization in terms of definition-use analysis.

Fourth, without taking aliasing in account, variables may incorrectly appear to be unref-
erenced (neither defined nor used), or to be used without being defined.

In conclusion, the combination of global variables and pointer variables is highly undesir-
able. In those situations where global variables are essentially unavoidable, pointer variables
should be eschewed.
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