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ABSTRACT
Probabilistic graphical model representations of relational
data provide a number of desired features, such as inference
of missing values, detection of errors, visualization of data,
and probabilistic answers to relational queries. However,
adoption has been slow due to the high level of expertise
expected both in probability and in the domain from the user.
Instead of requiring a domain expert to specify the probabilis-
tic dependencies of the data, we present an approach that
uses the relational DB schema to automatically construct
a Bayesian graphical model for a database. This resulting
model contains customized distributions for the attributes,
latent variables that cluster the records, and factors that
reflect and represent the foreign key links, whilst allowing
efficient inference. Experiments demonstrate the accuracy
of the model and scalability of inference on synthetic and
real-world data.
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1. INTRODUCTION
Relational databases have been the primary choice for man-

agement of structured knowledge for a majority of scientific
and commercial applications, such as medicine, bioinformat-
ics (protein interactions), commercial transactions, paper
citation records, product ratings, and many more. These
databases are often large, noisy, and contain missing values
for many cells. Incorporating machine learning techniques
into such databases can help in a number of ways: inference
of missing values, detection of errors in the database (out-
liers), probabilistic responses to queries (taking into account
the noisy and missing values), and visualization of the data.
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Traditional machine learning abstractions, such as classifi-
cation and clustering, cannot be applied directly to achieve
these goals in the structured data setting. However, an accu-
rate probabilistic graphical model that represents the rela-
tional structure is appropriate; many of the desired objectives
can be framed as inference (missing values), outlier detection
(error checking), conditional marginalization (queries), and
latent variables (visualization). To this end, there has been
work along a number of avenues. Statistical relational learn-
ing (SRL) has focused on construction of graphical models
specific to relational data1. The database community has
proposed probabilistic databases as an alternative approach,
i.e. creating tools to manage imprecise and uncertain data
in a scalable manner, and to support efficient probabilistic
inference for queries2.

Unfortunately, a number of shortcomings restrict the ap-
plication of these approaches in practice. First, these ap-
proaches are not fully-automated and require intervention
by a domain expert. Second, many of these approaches
assume that the domain expert also has a background in
basic machine learning (probability distributions, features
and sufficient statistics, graphical models, etc.). Further,
approaches that do not require a user to specify the model
(such as many probabilistic databases) often use simple mod-
els that fail to represent complex dependencies in the data.
Third, many of these approaches only support a small sub-
set from our desiderata, for example approaches in missing
value prediction often do not support error-checking and
visualization.

In this work, we propose an approach that automatically
creates a probabilistic graphical model for any given data-
base. Our approach is based on the observation that although
the domain experts have trouble specifying the probabilistic
model, they do spend considerable effort and expertise de-
signing and normalizing the database schemata, providing
foreign key relations that specify the dependencies. Using
this schema, we automatically generate a customized fully-
Bayesian, generative graphical model. Each table is modeled
as a mixture consisting of a latent component variable for
each row. We include variables and factors that cross mul-
tiple tables to represent dependencies between the latent
components according to the foreign key relationships.

This approach provides a number of advantages. The un-
derlying model allows prediction of foreign keys by including
foreign key attributes as random variables (referential un-
certainty). The latent variables represent clusterings over

1see Getoor and Taskar [4] for a comprehensive survey.
2see Dalvi et al. [2] for a comprehensive survey
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Figure 1: Building blocks of the graphical model: red

variables may be observed or unobserved.

the rows of each table in a manner that is aware of the
clusterings of linked tables; these clusterings can be used for
data exploration and visualization. Inference is used to learn
the parameters of the model, allowing predicted distributions
over the missing values and error-checking via outlier detec-
tion (low-probability observations). Most importantly, since
the approach is fully-automated, we enable the construction
of probabilistic models automatically for a large number of
existing databases without any manual intervention.

2. GRAPHICAL MODEL CONSTRUCTION
In this section we describe how we automatically create a

Bayesian graphical model from a database schema.

Schema Description: Formally, a schema S consists of
linked tables A,B,C, . . ., where each table A contains nA

value attributes for each row a, denoted by xAa1, x
A
a2, . . . , x

A
anA

.
These attributes are typed by the standard data types (inte-
ger, double, categorical, string, etc.), and may be missing or
observed. Each table A may also contain mA foreign links to
other tables B1, B2, . . . , BmA ; the pth link in row a in A to a

row in Bp is represented by f
ABp
a . The links in the schema,

when represented as edges A→ Bp, should form an acyclic
graph3. Further, we filter out the attributes that should not
be modeled, for example we automatically exclude string
attributes that contain many unique values.

Single Table: We begin the description of the model by
examining a single table A with attributes xA. We employ a
mixture model for each table, wherein a mixture component
is used to generate all the attributes xA

a of row a. Specifically,
the model for each table consists of JA components, and each
component j represents the distributions πA

j1, π
A
j2, . . . , π

A
jnA

that correspond to each attribute of A. Each row also con-
tains a latent variable zAa ∈ {1 . . . JA} that indicates the
component row a belongs to. We use this latent variable to
select the distribution to generate the attributes of the row,
i.e. we use πA

ji to generate xA
ai where j = zAa . The type of

the latent distributions πA
ji depends on the data type of the

attribute (Gaussian for real-valued, Discrete for categorical-
valued, and Bernoulli for Boolean-valued attributes), and
each distribution is generated from its observed, conjugate
prior αA

ji (Gaussian for the mean, Gamma for the precision,
Dirichlet for Discrete, and Beta for Bernoulli). If the table

3The violation to this (circular reference) is often discour-
aged, if not disallowed, in most DBMS. Further, such refer-
ences can often be normalized by including additional tables.
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A does not contain any links, the latent components zAa are
generated from a latent Discrete distribution πA of dimen-
sionality JA, with its observed Dirichlet prior αA. We show
such a model using the plate notation in Figure 1(a).

Foreign Links: Consider table B that contains foreign key
attributes to tables A1, A2, . . . , AmB . The data attributes
of each row b of the table xB

b are modeled as above using
latent component variables zBb . The foreign key for each

row b in table B to a table Ap is represented by f
BAp

b

that indexes into a row in table Ap. Since we would like
the links between rows to reflect the dependencies between
the tables, we make the component indicator zBb depend
on the component indicators of the foreign rows it links to

(z
Ap

k ; k = f
BAp

b ). Specifically, instead of generating zB from
a single distribution as in the previous section, we use as
many discrete distributions πB

i as the product of the number
of components in the linked tables (JA1 × JA2 × . . . JAmB

),

and select the corresponding distribution: zBb ← πB
i , where

i ≡
〈
zA1

(f
BA1
b

)
, zA2

(f
BA2
b

)
, . . . , zAn

(f
BAn
b

)

〉
4. The uncertainty in

foreign keys fBp is modeled as discrete distributions πBp

(with conjugate Dirichlet prior αBp) to predict missing and
incorrect foreign links. We show such a model in Figure 1(b).

Database Schema: An input schema S consists of tables,
their attributes, and acyclic foreign key relations. We use
the building blocks above to iteratively construct a model
for a schema by applying the single-table models to all value
attributes, simple priors for tables without any foreign keys,
and using the foreign links to define the dependencies between
the components for the tables with foreign keys. For an
example, consider a simple schema consisting of three tables
as shown in Figure 2(a). Figure 2(b) shows the generated
model, where we use mixture models for Users and Movies,
while the Rating table consists of additional dependencies of
the component indicators across tables. Note that we use a
slightly different notation in the example for clarity.

4As a consequence, the complexity of the model (number of
parameters) scales only with the number of components, not
with the number of rows in the parent tables.



Model Hyper-Parameters: A number of priors in the
models need to be specified. We set these priors to be unin-
formative5, however specifying the number of components
for each table is crucial. Too many components result in
slower inference, while too few components produce inaccu-
rate models. We set these components heuristically, and will
explore non-parametric approaches in future work.

3. INFERENCE
The model is generated as source code for Infer.NET [8],
however other graphical model toolkits may also be used.
Inference is performed using variational message passing [11].

Training and Predictions: During training, we learn the
parameters of the model and use it to predict missing values.
The complexity of each iteration of message passing is linear
in the number of rows when all foreign keys are observed,
since estimating the priors for foreign links is equivalent
to counting. When not all of the links are observed, the
complexity remains linear in the number of rows in tables
that contain links, which are often much bigger than the
tables they point to. Although the complexity is proportional
to the product of the number of components in tables that are
linked to (dimensionality of πB

i in Figure 1(b)), in practice
it is rare to find more than 3 tables linked from a single
table. Marginal distributions computed during inference for
each cell can be directly used to predict missing values (and
confidence) and detect outliers in the observed cells. Further,
latent variables z assign a component/cluster to each row;
predictions include probabilistic assignments of each row to
these clusters.

Querying the Model: The approach also supports a re-
stricted set of queries over the trained model. Queries take
the form of a set of rows for each table with missing values
or foreign links. Using the learned distributions, inference
estimates marginal posteriors over the query rows that are
used to predict missing values and detect outliers in the query.
Inference also provides clusters for each query row that may
be used to discover similar rows in the existing data (such as
other users that rate similarly). Query inference is efficient:
linear in query size if links to the existing data are observed.

4. EXPERIMENTS
In this section, we present experiments to evaluate the accu-
racy, clustering quality, and scalability of the approach.

Synthetic User-Movies-Ratings: One typical approach
to modeling values in a database is to use a single-table
mixture model on the result of a join over all the tables.
Unlike in our relational model, the dependencies across rows
are lost in the join operation6. To evaluate its effect on
accuracy, we compare these models by hiding a proportion of
cells before performing the join. We create synthetic data for
the schema in Figure 2(a), and perform inference to predict
the values of the hidden cells. The prediction error for real-
valued attributes is shown in Figure 3, demonstrating that
the schema-based model is consistently more accurate and
robust in the presence of missing cells. In particular, the

5We use (µ = 0, σ = 108) for Gaussian, (k = 1, θ = 10) for
Gamma, α = 1 for Discrete, and (α = 1, β = 1) for Beta.
6For example, age of a user may appear in multiple cells in
the joined table, and thus the estimates may be different.
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Figure 4: Time for Inference for MovieLens data
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Figure 5: Xbox Data: Visualizing players and games

rating scores are accurate even when half of the values are
missing, while the competing approach (in blue) suffers from
a high error even when only a few cells are missing.

MovieLens: We evaluate scalability on MovieLens (http:
//www.grouplens.org/node/73). The data is similar to
User-Movie-Rating example with additional attributes, and
consists of 943 users, 1682 movies, and 105 ratings. Since
the number of rows in the leaf table is much greater than in
other tables, we examine the scalability in terms of its size.
The running time of inference shows a linear trend with data
size in Figure 4(a). The trend in Figure 4(b) demonstrates
that the number of missing values in the database has little
effect on the running time, and thus can be applied to large
databases with noisy and missing attributes.

Xbox: To perform a qualitative evaluation of the predicted
clustering, we use Halo2 Xbox data [6]. The first dataset,
1-vs-1, consists of player Id table (with no attributes), and a
table of match results that consists of links to two players
and a Boolean result that is true if the first player was the
winner. The generated model assigns each player to one
of three components/clusters. We bin each of the matches
(pairs of players) according to the clusters that the players
belong to, and include the average result for each pair of
clusters (winning probability), in Figure 5(a). The clusters
separate the players fairly discriminatively in terms of win-
ning probabilities. Further, the clusters correspond to bad,
good, and excellent players respectively, demonstrating the
utility of the latent clustering for predicting player skills
without any domain-specific assumptions. We also apply
our approach to the Xbox team games dataset that contains
player, game (both only Ids) and score tables that represent
the score attained by the player in a game. The clustering
of players and games with the average scores in Figure 5(b)
shows that the clusters can be viewed as (Good, Normal,
Bad) over the players and (Difficult, Normal, Easy) over the
games, respectively.

http://www.grouplens.org/node/73
http://www.grouplens.org/node/73
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Figure 3: Results on Synthetic Data: Comparison of the relational model (in red) with a single table model generated

using a join (in blue) using RMSE on three real-valued attributes.

5. RELATED WORK
Relational Latent Variable Models: Our underlying
model is most similar to the latent variable models for rela-
tional data [12, 7]. These approaches construct a generative
model over entities and relations, where each member of
these classes is associated with attributes and latent com-
ponent indicators. A similar approach was also proposed
for graphical data [1]. Although we have been inspired by
these models, the relations that they support are restricted
to presence/absence, while our approach, by representing
uncertainty at the (finer) level of foreign key relationships,
is not restricted to Boolean links. Even though these ap-
proaches are non-parametric, inference speed is impractical;
inference for our model scales linearly in the size of the data.

Statistical Relational Learning (SRL): SRL has made
significant strides in representing uncertain entity-relation
data [4]. Friedman et al. [3] and Heckerman et al. [5] intro-
duce Bayesian models for SRL, allowing informed domain
experts to create probabilistic models. Taskar et al. [10] in-
stead use undirected models, for which Neville and Jensen [9]
introduce tractable learning. Our work differs in a number of
aspects. First, we directly represent the schema and foreign
keys, providing the flexibility to represent data that existing
approaches cannot. Second, we create a joint model and
use a well-understood inference algorithm that is accompa-
nied by certain guarantees. We prefer Bayesian generative
modeling due to its elegant adaptation to different domains;
undirected models are often unreliable on small and/or sparse
data. Third, since the schema captures much of the depen-
dency structure, by using latent foreign links we create a
customized model without making any other assumptions.

Probabilistic Databases: In recent years, there has been
significant progress in probabilistic databases, i.e. tools to
manage imprecise and uncertain data scalably, and to sup-
port efficient probabilistic inference for arbitrary SQL-like
queries [2]. To attain this goal, many of these approaches
make strong independence assumptions in the probabilistic
model, resulting in lower accuracy. Others require the user
to specify the underlying model, and perform efficient in-
ference and learning over this model. We instead focus on
automatically creating a joint, expressive model over all the
data, and perform queries on a subset of SQL. Although
filling missing values is related to uncertainty representa-
tion (as both require an underlying probabilistic model),
by restricting our queries to a reasonable subset (that we
feel is important), we are able to use the power of Bayesian

models and inference without sacrificing efficiency or mak-
ing strong independence assumptions. Further, we directly
represents referential uncertainty (foreign key prediction),
which is uncommon amongst the research in this area.

6. CONCLUSIONS
We suggest automatically compiling probabilistic graphical

models from database schemata. This approach allows us
to utilize the domain knowledge that went into the design
of the database schema and potentially makes probabilistic
graphical models directly available for a large fraction of
the world’s data. Inference on the compiled joint Bayesian
model allows the prediction of the values of missing cells in
the database, detect outliers, visualize clustering of the data,
and to answer basic probabilistic relational queries.
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