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Abstract. There has been growing interest in using joint inference across
multiple subtasks as a mechanism for avoiding the cascading accumula-
tion of errors in traditional pipelines. Several recent papers demonstrate
joint inference between the segmentation of entity mentions and their
de-duplication, however, they have various weaknesses: inference infor-
mation flows only in one direction, the number of uncertain hypotheses
is severely limited, or the subtasks are only loosely coupled. This pa-
per presents a highly-coupled, bi-directional approach to joint inference
based on efficient Markov chain Monte Carlo sampling in a relational
conditional random field. The model is specified with our new proba-
bilistic programming language that leverages imperative constructs to
define factor graph structure and operation. Experimental results show
that our approach provides a dramatic reduction in error while also run-
ning faster than the previous state-of-the-art system.

1 Introduction

Advances in machine learning have enabled the research community to build
fairly accurate models for individual components of an information extraction
and integration system, such as field segmentation and classification, relation
extraction, entity resolution, canonicalization, and schema alignment. However,
there has been significantly less success combining these components together
into a high-accuracy end-to-end system that successfully builds large, useful
knowledge bases from unstructured text.

The simplest possible combination is to run each component independently
such that they each produce their output using only provided input data. We
call this an isolated approach. For example, if asked to build a de-duplicated
database of bibliographic records given citation strings, one could build field
extraction and citation coreference models that operate independently of each
other. However, the accuracy of coreference would almost certainly be improved
if it could access the output of segmentation, and thus be able to separately
compare individual bibliographic fields such as authors, titles, and venues.
? First two authors contributed equally.



For this reason, the most common approach to component combination is
a pipeline, in which components are run in some order, and later components
have access to the output of already-completed earlier components. Here seg-
mentation could be run first, and then coreference would have fruitful access
to field boundaries. Nevertheless, pipeline systems also typically fail to produce
high-accuracy final output. This is because errors cascade and compound in a
pipeline. When an earlier component makes a mistake, later stages consuming
its output are also very likely to produce errorful output. Every stage is an op-
portunity for compounding error—for example, six components each having 90%
accuracy may result in about 50% accuracy for the final stage when pipelined.

In order to avoid this brittle accumulation of errors there has been increas-
ing interest in probabilistic models that perform joint inference across multiple
components of an information processing pipeline, e.g. [1]. Here the system does
not commit to a single answer in some stage before considering other stages;
rather, multiple hypotheses and uncertainty information are exchanged through-
out, such that some components can correct the misconceptions of others. The
need for joint inference appears not only in extraction and integration, but also
in natural language processing, computer vision, robotics, and elsewhere.

Joint inference aims to predict many variables at once, and thus usually
leads to complex graphical model structure with large tree-width, making exact
inference intractable. Several approximate methods for joint inference have been
explored.

One, described by Finkel et al. [2], runs a pipeline, but samples the output
for each component rather than selecting the single most likely output; then the
pipeline is run repeatedly so that different combinations of output throughout
the pipeline are evaluated. This feed-forward approach to inference is a classic
method in Bayesian networks, but has the drawback that it only allows infor-
mation to flow in one direction. For example, correct coreference of a messy
citation with a clean citation provides the opportunity for an alignment between
these two citations to help the model correctly segment the messy one. However,
feed-forward inference does not support this backward flow of information.

In another approach, pursued by Wellner et al. [3], each component pro-
duces a weighted N-best list of hypotheses for consumption by other components,
and components are re-visited in both directions—both forward and backward
through the pipeline. This approach allows information to flow in both directions,
however an N-best list is a restrictive approximation for the full distribution of
large-output components.

Yet another approach, proposed by Poon and Domingos [4], creates a sin-
gle Markov random field with factor template structure specified via first-order
logic—called a Markov logic network, MLN—and performs randomized approx-
imate inference by MC-SAT [5], a variant of WalkSAT [6]. MC-SAT repeatedly
reconsiders variables and factors in the model in an order independent of the
pipeline. However, as described below, limitations of first-order logic make it
difficult to specify a coreference factor that uses the uncertain output of seg-
mentation. For this reason, in Poon and Domingos [4], citation coreference com-



patibility is measured using features of the un-segmented citation (see Sect. 3.2),
and inference is not strongly bi-directional.

This paper presents a strong bi-directional approach to inference for joint seg-
mentation and coreference. Like Poon and Domingos [4] we use a conditionally-
trained factor graph, with randomized approximate inference that roams freely
in both directions. However, rather than employing first-order logic, we leverage
our new work in probabilistic programming that uses imperative procedures to
define the factor template structure. We term this approach imperatively-defined
factor graphs (IDFs); they are factor graphs whose template structure, as well
as aspects of parameterization and inference, are specified with the power of a
Turing-complete language. This added flexibility enables us to include more so-
phisticated factors between segmentation and coreference that allow information
to flow bi-directionally. In spite of being more expressive, IDF’s flexibility also
allows our model to be more efficient.

We evaluate our approach on segmentation and coreference of the citation
strings from the Cora data set. In comparison with Poon and Domingos [4] we
reduce coreference error and segmentation error by ∼ 20−25% while also running
3− 15 times faster, providing a new state-of-the-art result. We also analyze the
nature of bi-directional inference with separate diagnostic experiments.

2 Background

2.1 Factor Graphs

A factor graph [7] is a bipartite graph over factors and variables. Let factor graph
G define a probability distribution over a set of output variables y conditioned
on input variables x. A factor Ψi computes a scalar value over the subset of
variables xi and yi that are neighbors of Ψi in the graph. Often this real-valued
function is defined as the exponential of an inner product over sufficient statistics
{fik(xi,yi)} and parameters {θik}, where k ∈ [1,Ki] and Ki is the number of
parameters for factor Ψi. Let Z(x) be the data-dependent partition function used
for normalization. The probability distribution can be written as:

p(y|x) =
1

Z(x)

∏
Ψi∈G

exp

[
Ki∑
k=1

θikfik(xi,yi)

]
.

In practice factor graphs often use the same parameters for several factors;
this is termed parameter tying. A factor template Tj consists of parameters {θjk},
sufficient statistic functions {fjk}, and a description of an arbitrary relationship
between variables, yielding a set of satisfying tuples {(xj ,yj)}. For each of these
variable tuples (xi,yi) that fulfills the relationship, the factor template instan-
tiates a factor that shares {θjk} and {fjk} with all other instantiations of Tj .
Let T be the set of factor templates. In this case the probability distribution
becomes:

p(y|x) =
1

Z(x)

∏
Tj∈T

∏
(xi,yi)∈Tj

exp

 Kj∑
k=1

θjkfjk(xi,yi)

.



The process of instantiating individual factors from their templates is termed
unrolling. For a factor Ψi that is an instantiation of factor template Tj , the inner
product of {fjk(xi,yi)} and parameters {θjk} is termed the score of the factor.

In a pipeline approach to solving multiple tasks the influence between stages
is uni-directional down the pipeline, since inference is performed separately for
each task in a sequential order. To enable the bi-directional flow of information
we add factors connecting variables of different tasks and perform inference si-
multaneously for the entire model. A factor template defined over variables of
different tasks is termed a joint factor template, and an instantiation of a joint
factor template is called a joint factor.

Introducing joint factors usually increases the complexity of the graph be-
cause it tends to create many more cycles and a larger tree width. These complex
graphs often cause inference to become intractable, which we address by using
imperatively-defined factor graphs, as described next.

2.2 Imperatively-Defined Factor Graphs

Imperatively-defined factor graphs (IDFs) are an approach to probabilistic pro-
gramming that preserves the declarative semantics of factor graphs, while lever-
aging imperative constructs (pieces of procedural programming) to greatly aid
both efficiency and natural intuition in specifying model structure, inference,
and learning. Rather than using declarative languages, such as SQL or first-
order logic, model designers have access to a Turing complete language when
writing their model specification. A model written as an IDF is a factor graph,
with all the traditional semantics of factors, variables, possible worlds, scores,
and partition functions; IDFs simply provide an extremely flexible language for
their succinct specification that also enables efficient inference and learning. A
side benefit is that IDFs provide a mechanism whereby model designers can
inject both declarative and procedural domain knowledge.

We have developed IDFs in the context of Markov chain Monte Carlo (MCMC)
inference, which is a common approach to achieve efficiency in complex factor
graphs [8–10] where variable-factor connectivity structure changes during infer-
ence. In such situations, fully unrolling the graph (creating the factors that would
be necessary to score all possible worlds, as required for belief propagation) would
often result in an exponential or super-exponential number of factors. However,
in MCMC, we only represent a single possible world at a time. MCMC performs
inference by stochastically proposing some change to the current possible world,
and then accepting that change with a probability that depends on the ratio of
post- and pre-proposal model scores. Calculating these acceptance probabilities
is quite efficient because not only do the partition functions, Z(x), cancel, but
the contributions of all factors not touching changed variables also cancel; in
fact, in our implementation they are not even created. This allows us to avoid
the need to unroll and score the entire graph to evaluate a change, resulting in
quite efficient inference.



We summarize four key imperative constructs in IDFs, and argue that they
provide a natural interface to central operations in factor graph construction
and inference. For more details see [11].

1. Imperative structure definition determines the connectivity between factors
and their variable arguments. The key operation in efficient MCMC is finding
all variable arguments of a factor template given a relevant changed variable.
IDFs make this a primitive operation, with the opportunity to define its be-
havior in a Turing-complete language—dynamically finding all neighboring
variables of an instantiated factor given one of its neighbors. For example,
this approach allows arbitrary graph-search algorithms to define the argu-
ments of a factor.

2. Imperative constraint preservation keeps all explored possible worlds in the
feasible region by embedding the necessary control in the procedurally-
defined MCMC proposal function. For example, we can avoid the large ex-
pense of having factors that aim to enforce transitivity in coreference by
instead: (a) initializing to a possible world that obeys transitivity, and (b)
implementing a proposal function that is guaranteed to preserve the transi-
tivity constraint.

3. Imperative variable coordination also preserves constraints or encourages
more fruitful proposals by including in the variable-value setting method
of one variable a procedural “hook” that automatically sets other related
variable(s) to a compatible value.

4. Imperative variable-sufficient mapping allows the data to be represented in
natural, convenient variables, and then later to be functionally mapped into
the sufficient statistics required for our desired parameterization.

We have implemented IDFs in the Factorie toolkit1 [11]. Typically, IDF
programming consists of four distinct stages: (1) defining the data representation,
(2) defining the factors for scoring, (3) optionally providing domain knowledge
to aid inference (including the flexibility to write the entirety of a proposal
function), (4) reading in the data, learning parameters, testing, and evaluating.

For parameter estimation in this paper we use Sample-Rank [12]. This method
embeds opportunities for approximate gradient ascent into each MCMC proposal
step by performing perceptron-like updates whenever possible worlds, pre- and
post-proposal, are ranked differently by their model scores versus their distance
to the labeled true world. Sample-Rank’s proof of convergence [12] is similar to
the proof for perceptron. In this paper, the final values of each parameter are
obtained by averaging over the learning period. To evaluate a trained model we
search for the MAP configuration by running MCMC with a low temperature
applied to the ratio of model scores in the proposal acceptance probability.

1 Available at http://factorie.cs.umass.edu



3 Bi-directional Joint Inference for Segmentation and
Entity Resolution

In some information extraction tasks mentions of entities must be discovered by
segmenting them from background text. In other cases the mention strings are
provided, but they have internal structure requiring segmentation. Here we ad-
dress the latter case, in which we jointly segment the contents of many mentions,
while simultaneously performing coreference on the mentions.

Consider the task of citation matching in which we are given a large collection
of citation strings from the “References” section of research papers. They have
different citation styles, different abbreviations, and typographical errors. Many
of the citations refer to the same underlying papers. Our job is to find the
citations referring to the same paper (coreference or entity resolution) and also
identify the author, title, and venue fields of each citation (segmentation).

The tasks of segmentation and entity resolution are often solved in isolation,
without access to each other’s predictions [13, 14], however, using the results of
the other subtask often helps reduce errors. For example, coreference compati-
bility between two citations can be assessed more accurately if we can compare
segmented title fields and venue fields separately, with different distance mea-
sures for each. Also, segmentation accuracy can be improved by accounting for
field similarity among multiple coreferent citations. These interdependencies be-
tween the two tasks have led others to explore joint models of segmentation and
coreference of citations with generative models [15], with conditionally-trained
models performing bi-directional N-best message-passing between tasks [3], and
with conditional models whose bi-directional factors mainly leverage coreference
for performing segmentation [4].

Next we present a highly-coupled, bi-directional approach to joint inference
for citation segmentation and coreference. We use imperatively-defined factor
graphs (IDFs) to specify a single undirected graphical model that performs both
tasks. It includes multiple factors that simultaneously examine variables of seg-
mentation and coreference. In the following sections we describe the variables
and factors of this model, as well as the MCMC proposal function used.

3.1 Variables

Segmentation Variables. Observed and predicted data for segmentation are
represented by three types of variables: Token, Label, and Field. Each ob-
served citation string consists of a sequence of words, each represented by a
Token whose value is the word string itself. Each Token is associated with a
corresponding unobserved Label variable, whose value is any of the field types,
or “None.” In addition, consecutive Tokens whose Labels have the same value
are also represented as a Field variable, whose value is the string formed by the
concatenation of its words. Fields are set in coordination with Labels through
imperative variable coordination, and facilitate joint factors between coreference
and segmentation. These variables are summarized in Table 1.



Table 1. Variable Types for Segmentation and Coreference: Variable types
that are used in the joint model of segmentation and entity resolution.

Segmentation Variable Types

Token: Observed variable that represents a word in the mention string
Label: Variable that can take any of the field types as a value (or “None”)
Field: Indices of consecutive Tokens that belong to a particular field

Coreference Variable Types

Mention: Variable that takes a single Entity as its value
Entity: Set of Mentions that are coreferent

Coreference Variables. There are two variable types for coreference: Entity
and Mention. Each Entity embodies an underlying paper, to which there may
be many citations. Each citation is represented by a Mention whose coreference
involves an assignment to its corresponding Entity. Although each Mention ob-
ject contains the citation string as a member instance variable, the Mention’s
value (as an IDF random variable) is the Entity to which it has been assigned.
The Entity is accordingly a set-valued variable—its value is the set of Mentions
that have this Entity as their value. The values of Mentions and Entities are
synchronized through imperative variable coordination. Note that this represen-
tation eliminates the need for factors enforcing mutual-exclusion or transitivity
since each Mention can only have one Entity as its value. These variables are
also summarized in Table 1.

Connections between Coreference and Segmentation Variables To sup-
port joint factors between segmentation and coreference, the above variables
contain references to each other. We take advantage of the fact that our random
variables are objects in an object-oriented programming language, and represent
arbitrary relations as member instance variables. Each Mention contains an ar-
ray of its Tokens, as well as a list of its constituent Fields. Furthermore, each
Field has a reference to its enclosing Mention, comprising Tokens, and adja-
cent Fields. These object-oriented cross-references are used to efficiently find
the neighboring variables of a factor (imperative structure definition) and to
access related variables for calculating sufficient statistics (imperative variable-
sufficient mapping).

3.2 Factors Templates

Now we define the factor templates that are used to score possible worlds; they
are summarized in Table 2. A small example consisting of three mentions and
three fields, showing their instantiated factors and neighboring variables, is de-
picted in Figure 1. Given the neighboring variables of a factor, most of our
factor templates employ additional computation to calculate sufficient statis-
tics (features) from these neighbors—leveraging the flexible separation of data
representation and parameterization (imperative variable-sufficient mapping).



Table 2. Factor Templates of Segmentation and Coreference: Factor templates
that are used in the joint model of segmentation and entity resolution.

Segmentation Factors

LabelToken: Factor between every token and its field type
LabelNextToken: Factor between every label and the next token
LabelPrevToken: Factor between every label and the previous token
FieldFactor: Factor created for every Field to allow field-wise features

Coreference Factors

Affinity: Factor created between coreferent pairs of Mentions

Repulsion: Factor created between pairs of Mentions that are not coreferent

Joint Factors

JntInfBased: Factor between Mention and Label based on joint factors in [4]
JointAffinity: Factor between Fields of the same type of coreferent Mentions

JointRepulsion: Factor between Fields of the same type of non-coref. Mentions

Segmentation The segmentation factor templates express preferences about
the Tokens’ Label values and their segmentation into Fields. We define three
factor templates traditional in linear-chain CRFs: factors between each Label
and its corresponding Token (LabelToken), plus factors between the Label and
adjacent Tokens on either side (LabelPrevToken and LabelNextToken).

In addition we define a factor template that examines a Field (and there-
fore has simultaneous access to all its constituent Tokens). This allows us to
implement features similar to the rest of the segmentation rules of Poon and
Domingos’ “Isolated” MLN [4]. These include various first-order formulae over
the Tokens of a Field. We also employ features testing the existence of punctua-
tion at the beginning, the end, and within the Field. Finally we include features
that take the position of the Field within the mention string into account. All
of these features are taken in conjunction with the field type (Label).

Coreference We have two coreference factor templates, which express pref-
erences about partitioning Mentions into Entities. One measures pairwise
affinity between Mentions in the same Entity; the other measures pairwise
repulsion between Mentions in different Entities. Both factor templates have
two Mentions as neighbors, and they both share the same imperative variable-
sufficient mapping function. The number of these factors for a fully-unrolled
graph is O(m2) (where m is the number of the citations). As described above,
IDFs do not unroll the graph fully, and only need evaluate factors neighboring
moved Mentions, which is O(k) (where k is the average Entity size).

Affinity and Repulsion factors are scored using the same features (i.e.
sufficient statistics function), but different parameters. These sufficient statistics
are calculated from the un-segmented citation strings. We use the SimilarTitle
and SimilarVenue features as defined in [4]. Furthermore, we add a SimilarDate
feature that is true when the same year Token appears in both Mentions, as
well as a DissimilarDate feature that is true when unequal year Tokens appear.



Fig. 1. Model: Variables and factors for joint segmentation and entity resolution
shown on a toy example containing two entities and three mentions with a single
field in each. Segmentation factors are only shown for one field. JntInfBased factors
have been omitted for clarity.

Bi-directional Joint factor templates express preferences about both segmen-
tation and coreference simultaneously. In Poon and Domingos [4] all of the in-
teraction between these tasks is captured by four similar rules that use their
“JntInfCandidate” predicate. JntInfCandidate(m, i,m′) is true if the Token tri-
gram starting at position i in Mention m also appears in Mention m′, and the
trigram in m is not preceded by punctuation whereas the trigram in m′ is. The
trigram also must not meet certain “title exclusion” rules described in [4]. Note
that JntInfCandidate is pre-calculated from the observed data, independent of
segmentation and coreference predictions.

Even though Poon and Domingos’ rules containing JntInfCandidate are scored
on changes to both coreference and segmentation decisions, there are two reasons
it forms only a weak interaction between the tasks. First, these templates only
examine pairs of consecutive labels, not whole fields—failing to use information
from predicted field range and non-consecutive words in the field. Second, the fre-
quency with which the JntInfCandidate feature appears is quite data-dependent.
In the Cora corpus, it occurs only 4973 times—representing an average of < 4
possible coreference candidates per Mention, whereas the average Entity size is
∼ 10. On the other hand, if the feature occurs too often, it can be harmful for
coreference. We hypothesize these reasons explain the empirical results in [4],
in which the joint factors do not help entity resolution. We further explore this
issue in Sect. 5.2.

To achieve stronger interaction between the tasks, we add factor templates
that examine predicted Fields jointly with coreference decisions (Mentions).
Our JointAffinity factor template defines factors that measure the compatibil-



ity of corresponding Fields in coreferent Mentions. Similarly JointRepulsion
factor templates compare the corresponding Fields of non-coreferent Mentions.
Hence the features (sufficient statistics) of these factor templates are able to
compare full extracted field strings, and include StringMatch, SubStringMatch,
PrefixMatch, SuffixMatch, AnyNTokenMatch, TokenIntersectionSize, etc.

One reason such strongly-joint factor templates have not been used in related
work is due to the large number of factor instantiations in the many possible
worlds. Such a factor could be created between any two pairs of Mentions, and
any pair of their possible Field segmentations. This leads to O(m2n4) factors,
where m is the number of Mentions, and n is the maximum number of Tokens
in a Mention string. The number of factors then becomes too large to be pre-
processed and stored for big datasets, making such factor templates intractable
for methods that fully unroll the factor graph or that pre-calculate features. This
problem is common in joint inference because factors that represent dependencies
between tasks often blow-up in the cross-product of the two hypothesis spaces.
Since IDFs never unroll the entire factor graph and allow on-the-fly feature
calculation they can efficiently use such factors.

3.3 Proposal Function

Our MCMC proposal function can make changes either to coreference or segmen-
tation. A coreference proposal selects a random Mention, then with probability
0.8 moves it to another randomly selected Entity, or with probability 0.2 makes
it a singleton in a new Entity. A segmentation proposal selects a random Field
and identifies the minimum and maximum amount by which the Field can
shrink or grow (which depends on the neighboring Fields). A new range for
the Field is selected randomly based on that potential range. When the range
of a Field is changed, the corresponding Labels are automatically adjusted via
imperative variable coordination. The order of fields within a mention string is
fixed: author, title, then venue.

4 Experimental Setup

We use the Cora dataset2 [16] to evaluate our joint entity resolution and segmen-
tation model. The dataset contains a total of 1,295 citations that refer to 134
ground truth entities. Each citation has three fields (author, title, and venue),
with a total of 36,487 tokens. The dataset is divided into the same three folds
used by [4]. These folds were not entirely random since they ensure no clusters
are split across different folds. Ten runs of three-fold cross-validation are per-
formed on the dataset, unless otherwise specified. Segmentation is evaluated on
token-wise precision, recall, and F1. Pairwise coreference decisions are evaluated
to obtain the precision, recall, and F1. Cluster recall, defined as the fraction of
clusters that are correctly predicted, is calculated to compare with earlier results.

2 The cleaned version available at http://alchemy.cs.washington.edu/papers/poon07



As a baseline we run isolated coreference and segmentation experiments.
These isolated models use only the segmentation and coreference factors, as
described in Table 2, respectively (not the “joint factors”). Coreference is ini-
tialized to an all-singleton configuration, while segmentation is initialized to an
equal-sized three way split of the mention string; we term these “default” config-
urations. Training consists of 5 loops of 100,000 proposals each. At the beginning
of every loop we initialize either to the ground truth or the default configura-
tion, selected randomly. Test-time inference consists of 300,000 proposals (for
each task), starting with the default configuration. The temperatures for an-
nealing during training and testing are set to 1.0. During training and inference
for baseline isolated tasks only the respective proposal function is used.

Three different types of joint experiments are run to examine several aspects
of the bi-directional nature of the joint model. For all of the joint experiments
training is performed for 5 loops of 250,000 proposals each. Each task is initialized
to either the default or the ground truth configuration, selected randomly, at the
beginning of every training loop. Test-time inference consists of a total of 750,000
proposals across both tasks. The temperatures for training and testing are set to
3.0 and 1.0, respectively. During joint inference the proposal function randomly
chooses between selecting a coreference or a segmentation proposal.

5 Results

The first joint experiment evaluates the full model including all factor tem-
plates and features, and compares these results to the isolated baseline models.
The second joint experiment separately evaluates the gains resulting from the
JointInfBased factors and the fully bi-directional factors described in Sect. 3.2.
The third joint experiment examines the behavior of passing predictions between
coreference and segmentation in an iterative fashion.

The experiments run very quickly, which can be attributed to imperative
variable coordination and imperative structure definition, as described earlier.
Training and inference of the isolated tasks finish within 3 minutes while the
joint task takes approximately 18 minutes to run. By comparison, MC-SAT in
[4], which does not enforce transitivity constraints for coreference, takes 50− 90
minutes. Adding transitivity constraints to the MLN severely increases running
time further, as shown in [17].

5.1 Overall Joint Inference

Our results on the Cora dataset are shown in Table 3 and Table 4, demonstrat-
ing the benefits of a bi-directional approach to joint inference, with significant
improvements on both segmentation and coreference. We also compare with the
Fellegi-Sunter coreference model [14]. All improvements of our joint model over
our isolated models are statistically significant at 1% using the T-test.

Table 3 shows that our isolated coreference model outperforms the previously
published results in [4] on both metrics. Our joint model, which concurrently



Table 3. Cora Coreference: Pairwise precision/recall, F1, and cluster recall, for the
coreference task on the Cora dataset.

Method Prec/Recall F1 Cluster Rec.

Fellegi-Sunter 78.0/97.7 86.7 62.7
Joint MLN 94.3/97.0 95.6 78.1
Isolated IDF 97.09/95.42 96.22 86.01
Joint IDF 95.34/98.25 96.71 94.62

Table 4. Cora Segmentation: Token-wise F1 for each field of the segmentation task
on the Cora dataset.

Method Author Title Venue Total

Isolated MLN 99.3 97.3 98.2 98.2
Joint MLN 99.5 97.6 98.3 98.4
Isolated IDF 99.35 97.63 98.58 98.51
Joint IDF 99.42 97.99 98.78 98.72

solves the segmentation task, outperforms our isolated coreference model, with
a 13% error reduction compared to our isolated IDF. It also provides an overall
25.2% error reduction in pairwise coreference F1 in comparison to the joint
MLN. In addition, Table 3 shows that the joint approach allows cluster recall
to improve substantially, resulting in a 75.4% error reduction compared to the
joint MLN, and a 61.5% error reduction compared to our isolated IDF.

Table 4 shows similar improvements on the segmentation task. Our isolated
segmentation model significantly outperforms all earlier results, and the joint
model uses the coreference predictions to improve segmentation further. In com-
parison to the joint MLN we provide an overall error reduction in token-wise
segmentation F1 of 20.0%. Compared to our isolated IDF the reduction is 14.1%.

5.2 Bi-directionality

We also examine the performance as joint factors are added to our isolated
models. The results are shown in Fig. 2. The isolated models produces the lowest
scores amongst our models. “Semi-Joint” refers to the model containing the
JointInfBased factors in addition to the isolated factors. They lead to a larger
improvement in segmentation than in coreference, confirming their weaker effect
on coreference proposals. When the fully bi-directional factors are also added
(“Fully-Joint”) both segmentation and coreference scores improve. However, the
improvement for coreference is much higher. Recall that the factors added for the
“Fully-Joint” model are prohibitively expensive to pre-calculate (as described in
section 3.2), which demonstrates the benefit of using an IDF for bi-directional
joint inference.
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Fig. 2. Adding Joint Factors: F1 of the joint model as different types of factors
are added, starting with the base model containing only isolated segmentation and
coreference factors. “Semi-Joint” refers to the model containing weakly joint factors
while the “Fully-Joint” model consists of bi-directional highly-coupled factors.

5.3 Iterated Pipeline Comparison

Conventionally, multiple information extraction tasks are solved using a pipeline
architecture in which the output predictions of one task are used as input to
the next. To minimize error caused due to cascading, multiple iterations of a
pipeline can be carried out, such that the output predictions of the last stage of
the pipeline feed back to the first stage.

As described earlier, we switch between segmentation and coreference propos-
als randomly. From the iterated pipeline perspective our method of performing
joint inference is similar to repeating a pipeline in which each stage consists of
a single proposal. To compare the performance of the fully joint proposal func-
tion against an iterated pipeline, we vary the number of pipeline iterations—by
changing the total number of stages—while keeping the total number of training
and testing proposals constant.

Our results are shown in Fig. 3. Each experiment involves 20 runs of three-fold
cross validation using 5 loops of 250,000 training proposals and 750,000 testing
proposals. The proposals are evenly divided across the stages, for example, the 2-
stage experiment consists of 125,000 training proposals in segmentation followed
by 125,000 training proposals in coreference for each of the 5 loops. In compari-
son, the 10-stage experiment consists of 5 pipelines, in which each pipeline has a
segmentation stage of 12,500 proposals followed by a coreference stage of 12,500
proposals. Thus a higher number of total stages leads to a smaller number of
proposals per stage. The first stage is always segmentation, to be consistent with
earlier work in citation matching [15].

For both tasks our experiments show that the fully joint model gives higher
F1 than any of the iterated pipeline results. Notice that the segmentation F1 rises
as the number of stages in the pipeline increases. It is possible that segmentation
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Fig. 3. Iterated Pipeline: Performance of segmentation and coreference as the num-
ber of iterations of the pipeline is varied for a fixed number of total sampling steps
over all iterations. The dotted line denotes the model that performs inference jointly,
randomly switching between segmentation and coreference proposals.

F1 for a specific number of stages may be better than the fully joint results.
However, finding the optimal number of stages can be expensive and we feel
that a fully joint model is likely to perform competitively and generalize to a
withheld validation set.

6 Related Work

Many researchers have explored issues of joint inference in text processing. Mc-
Callum and Jensen [1] present a position paper motivating the need for joint
inference, and propose unified undirected graphical models for joint information
extraction and data mining, describing several examples of conditional random
fields. Many other papers present experimental results with various methods
of inference. Sometimes joint inference can be done with standard dynamic-
programming methods, for example, joint named entity recognition and parsing
[18, 19] via CYK, with parse non-terminal symbols augmented to include named
entity information. Another common alternative is feedforward N-best lists, e.g.
[20, 21]. The feedforward probability distribution can be better approximated
by sampling [2], but this flow of information is still uni-directional. Others have
passed N-best list information bi-directionally between two tasks [3, 22]. Multi-
directional passing of full probability distributions corresponds to loopy belief
propagation, which has been used for skip-chains [23]. If joint factors can be
expressed as linear constraints, one can employ efficient software packages for
integer linear programming (ILP) [24]. When the structure of the model is chang-
ing during inference, MCMC provides significant efficiencies [8–10].



Joint citation segmentation and coreference has become somewhat of a stan-
dard evaluation task. Pasula et al. [15] perform this task using BLOG to define
a generative model of research paper entities and their noisily-rendered cita-
tions; they perform inference by MCMC. Wellner et al. [3] bi-directionally pass
N-best lists among conditional random fields for 14-field citation segmentation,
coreference, and canonicalization. Poon and Domingos [4] avoid N-best lists with
inference via MC-SAT in a Markov logic network. However, the tasks are weakly-
coupled, do not enforce transitivity, and only segment into three fields. In this
paper, for purposes of comparison, we perform the same three-field task. We
leverage the efficient power of IDFs to define bi-directional joint factors that
provide reduced error, faster running times, and enforce coreference transitivity.

7 Conclusions and Future Work

In this paper we presented a highly-coupled, bi-directional model for joint in-
ference in citation segmentation and coreference, yielding new state-of-the-art
accuracy. We incorporate factors that use coreference to aid segmentation and
vice-versa, and do so efficiently using imperatively-defined factor graphs (IDFs).
Compared to other joint models for the same tasks, our method results in an
error reduction of 20 − 25%, providing a new state-of-the-art result, while also
running 3− 15 times faster. In future work we will explore similar methods for
joint inference in newswire named entity extraction and coreference, in which,
unlike citations, the number of mentions must be inferred.
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