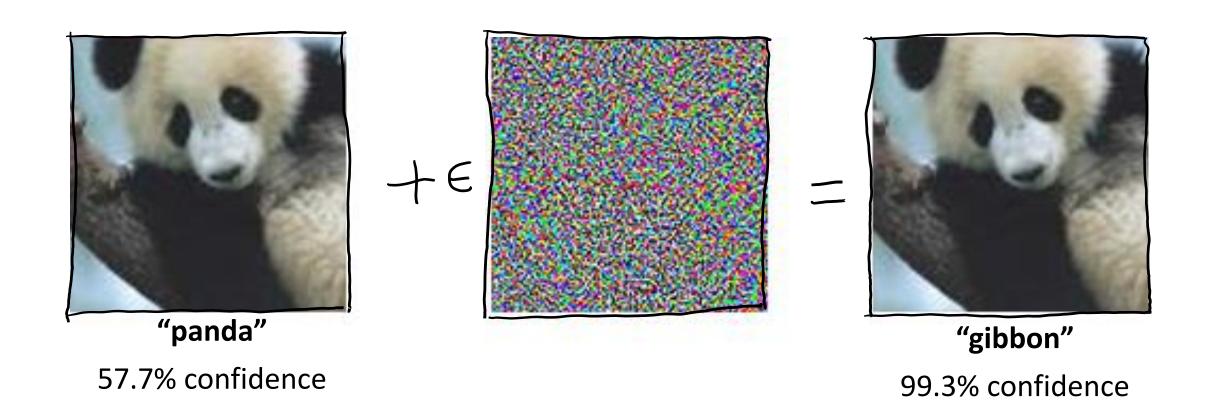
Slides: http://tiny.cc/adversarial

Adversarial Examples in NLP

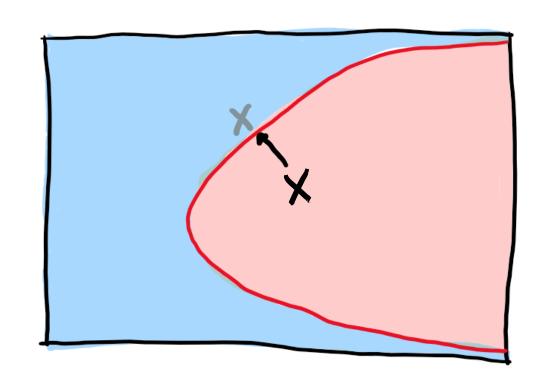
Sameer Singh

sameer@uci.edu @sameer_ sameersingh.org

What are Adversarial Examples?



What's going on?



min
$$||x - x'||$$

x'
s.t. $f(x') \neq f(x)$

Fast Gradient Sign Method

$$X' \leftarrow X + \in Sign(\nabla_x J(x))$$

Applications of Adversarial Attacks

- Security of ML Models
 - Should I deploy or not? What's the worst that can happen?
- Evaluation of ML Models
 - Held-out test error is not enough
- Finding Bugs in ML Models
 - What kinds of "adversaries" might happen naturally?
 - (Even without any bad actors)
- Interpretability of ML Models?
 - What does the model care about, and what does it ignore?

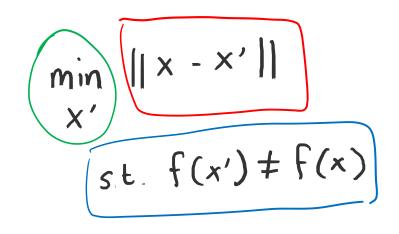
Challenges in NLP

Change

L₂ is not really defined for text What is imperceivable? What is a small vs big change? What is the right way to measure this?

Search

Text is discrete, cannot use continuous optimization How do we search over sequences?

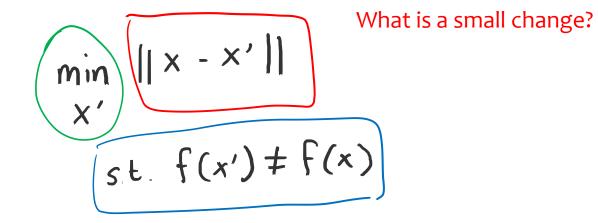


Effect

Classification tasks fit in well, but ... What about structured prediction? e.g. sequence labeling Language generation? e.g. MT or summarization

Different ways to address the challenges

How do we find the attack?



What does it mean to misbehave?

min
$$||x - x'||$$

X'

S.t. $f(x') \neq f(x)$

What is a small change?

Change: What is a small change?

Characters

Pros:

- Often easy to miss
- Easier to search over

Cons:

- Gibberish, nonsensical words
- No useful for interpretability

Words

Pros:

- Always from vocabulary
- Often easy to miss

Cons:

- Ungrammatical changes
- Meaning also changes

Phrase/Sentence

Pros:

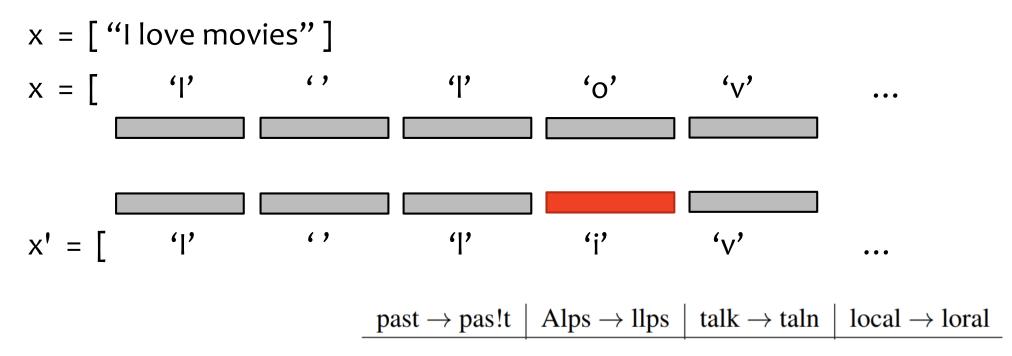
- Most natural/human-like
- Test long-distance effects

Cons:

- Difficult to guarantee quality
- Larger space to search

Main Challenge: Defining the distance between x and x'

Change: A Character (or few)



Edit Distance: Flip, Insert, Delete

Change: Word-level Changes

$$x' = [$$

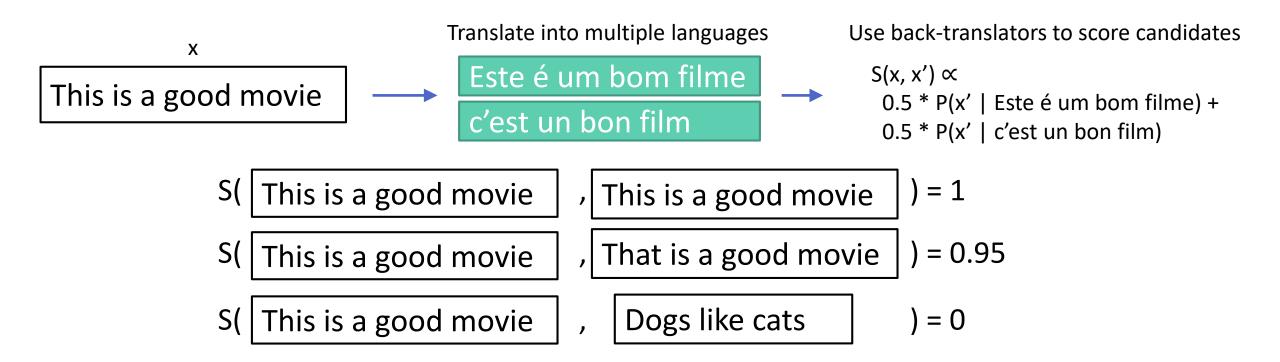
$$x' = [$$

$$x' = [$$

$$x' = [$$

Change: Paraphrasing via Backtranslation

x, x' should mean the same thing (semantically-equivalent adversaries)



Change: Sentence Embeddings



min
$$||z-z'||$$

x'
s.t. $f(x') \neq f(x)$

- Deep representations are supposed to encode meaning in vectors
 - If (x-x') is difficult to compute, maybe we can do (z-z')?

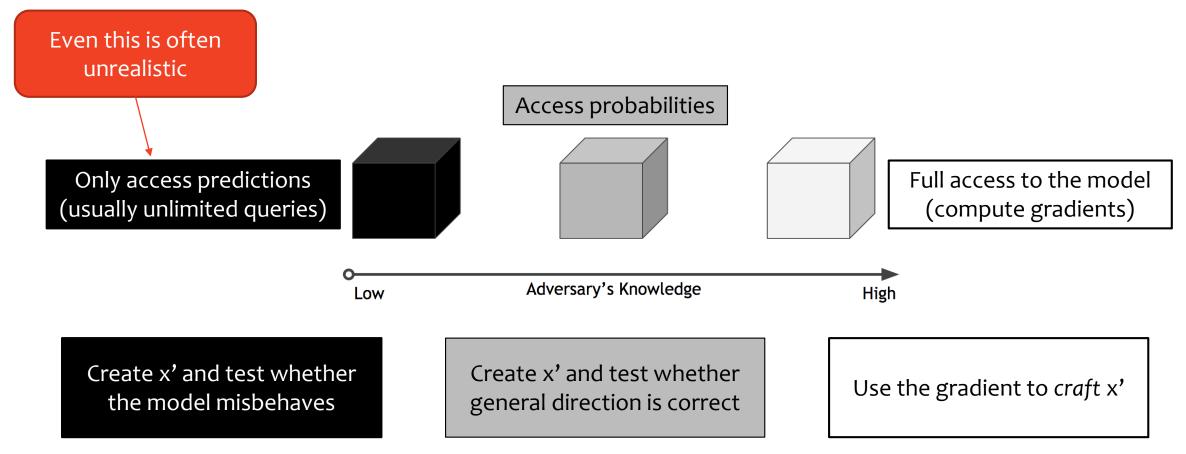
Min
$$X'$$

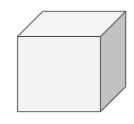
S.t. $f(x') \neq f(x)$

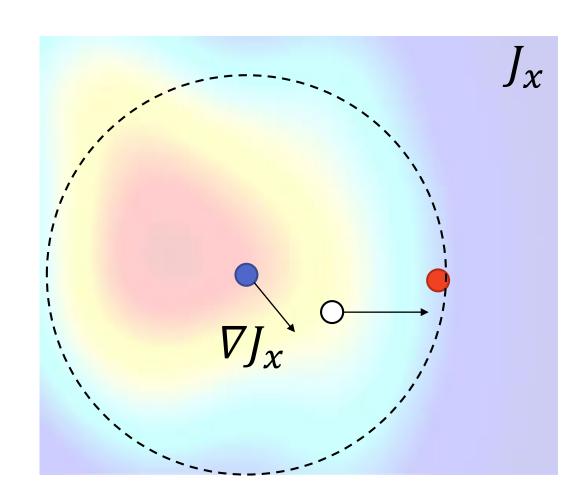
What is a small change?

How do we find the attack?

Search: How do we find the attack?



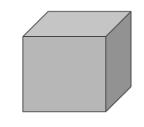


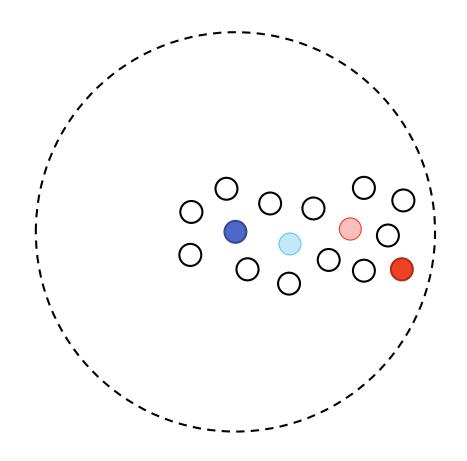


Or whatever the misbehavior is

- 1. Compute the gradient
- 2. Step in that direction (continuous)
- 3. Find the nearest neighbor
- 4. Repeat if necessary

Beam search over the above...



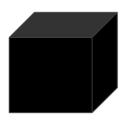


- 1. Generate local perturbations
- 2. Select ones that looks good
- 3. Repeat step 1 with these new ones
- 4. Optional: beam search, genetic algo

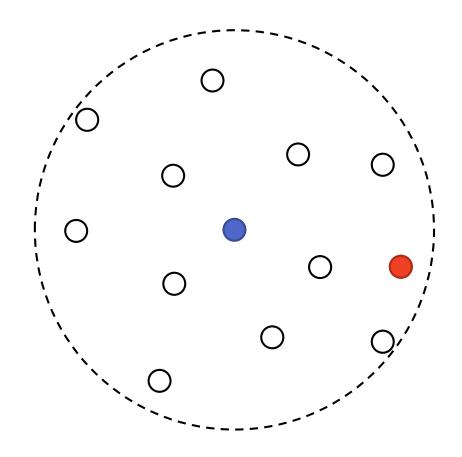
[Jia and Liang, EMNLP 2017]

[Zhao et al, ICLR 2018]

[Alzantot et. al. EMNLP 2018]



Search: Enumeration (Trial/Error)



- 1. Make some perturbations
- 2. See if they work
- 3. Optional: pick the best one

[lyyer et al, NAACL 2018]

[Ribeiro et al, ACL 2018]

[Belinkov, Bisk, ICLR 2018]

How do we find the attack?

$$\min_{x'} ||x - x'||$$

s.t. $f(x') \neq f(x)$

min
$$||x - x'||$$

x'
 $s.t. f(x') \neq f(x)$

What does it mean to misbehave?

Effect: What does it mean to misbehave?

Classification

Untargeted: any other class

Targeted: specific other class



Other Tasks

MT: Don't attack me! → ;No me ataques!

NER: Sameer PERSON is a prof at UCI ORG!

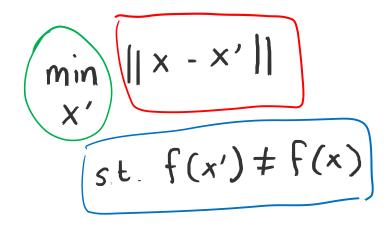
Loss-based: Maximize the loss on the example e.g. perplexity/log-loss of the prediction

Property-based: Test whether a property holds e.g. MT: A certain word is not generated NER: No PERSON appears in the output

Evaluation: Are the attacks "good"?

- Are they Effective?
 - Attack/Success rate
- Are the Changes Perceivable? (Human Evaluation)
 - Would it have the same label?
 - Does it look natural?
 - Does it mean the same thing?
- Do they help improve the model?
 - Accuracy after data augmentation
- Look at some examples!

Review of the Choices



Change

- Character level
- Word level
- Phrase/Sentence level

Effect

- Targeted or Untargeted
- Choose based on the task

Search

- Gradient-based
- Sampling
- Enumeration

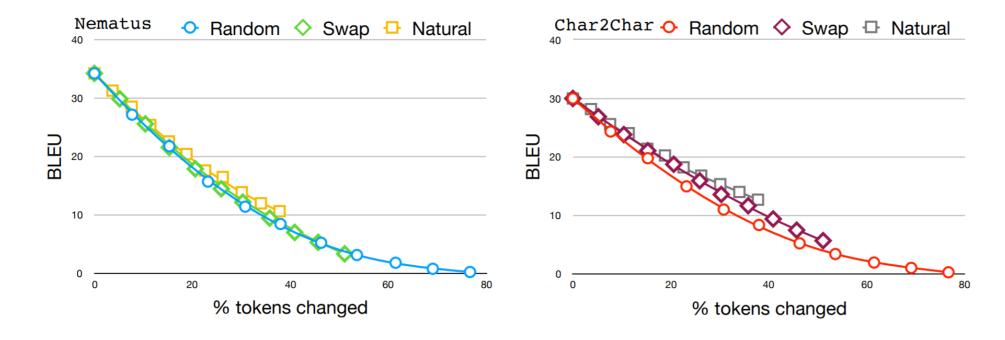
Evaluation

Research Highlights

In terms of the choices that were made

Noise Breaks Machine Translation!

Change	Search	Tasks
Random Character Based	Passive; add and test	Machine Translation



Hotflip

Change	Search	Tasks
Character-based (extension to words)	Gradient-based; beam-search	Machine Translation, Classification, Sentiment

News Classification

South Africa's historic Soweto township marks its 100th birthday on Tuesday in a mood of optimism. 57% **World**

South Africa's historic Soweto township marks its 100th birthday on Tuesday in a moo**P** of optimism. 95% **Sci/Tech**

Machine Translation

src	Das ist Dr. Bob Childs – er ist Geigenbauer und Psychotherapeut.
adv	Das ist Dr. Bob Childs – er ist Geigenbauer und Psy6hothearpeiut.
src-output	This is Dr. Bob Childs – he's a wizard maker and a therapist's therapist.
adv-output	This is Dr. Bob Childs – he's a brick maker and a psychopath.

Search Using Genetic Algorithms

Black-box, population-based search of natural adversary

Change	Search	Tasks
Word-based, language model score	Genetic Algorithm	Textual Entailment, Sentiment Analysis

Original Text Prediction: **Entailment** (Confidence = 86%)

Premise: A runner wearing purple strives for the finish line.

Hypothesis: A runner wants to head for the finish line.

Adversarial Text Prediction: **Contradiction** (Confidence = 43%)

Premise: A runner wearing purple strives for the finish line.

Hypothesis: A racer wants to head for the finish line.

Natural Adversaries

Change	Search	Tasks
Sentence, GAN embedding	Stochastic search	Images, Entailment, Machine Translation

Textual Entailment

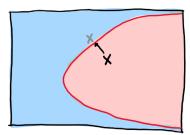
Classifiers	Sentences	Label
Original	p : The man wearing blue jean shorts is grilling.h : The man is walking his dog.	Contradiction
Embedding	\mathbf{h}' : The man is walking by the dog.	$Contradiction \rightarrow Entailment$

- 5	Source Sentence (English)	Generated Translation (German)
	s: People sitting in a dim restaurant eating s': People sitting in a living room eating .	Leute, die in einem dim Restaurant essen sitzen. Leute, die in einem Wohnzimmeressen sitzen. (People sitting in a living room)
	s: Elderly people walking down a city street. s': A man walking down a street playing	Ältere Menschen, die eine Stadtstraße hinuntergehen . Ein Mann, der eine Straße entlang spielt. (A man playing along a street.)

Semantic Adversaries

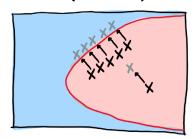
Change	Search	Tasks
Sentence via Backtranslation	Enumeration	VQA, SQuAD, Sentiment Analysis

Semantically-Equivalent Adversary (SEA)



What color is the tray?	Pink
What colour is the tray?	Green
Which color is the tray?	Green
What color is it?	Green
How color is tray?	Green

Semantically-Equivalent Adversarial Rules (SEARs)





color → colour

Transformation Rules: VisualQA

SEAR	Questions / SEAs	f(x)	Flips
WP VBZ \rightarrow WP's	What has What's been cut?	Cake Pizza	3.3%
What NOUN → Which NOUN	What-Which kind of floor is it?	Wood Marble	3.9%
color → colour	What <i>colou</i> colour is the tray?	Pink Green	2.2%
ADV is → ADV's	Where is Where's the jet?	Sky Airport	2.1%

Transformation Rules: SQuAD

SEAR	Questions / SEAs	f(x)	Flips
What VBZ → What's	What is What's the NASUWT?	Trade union Teachers in Wales	2%
What NOUN → Which NOUN	What resource Which resource was mined in the Newcastle area?	coal wool	1%
What VERB → So what VERB	What was So what was Ghandi's work called?	Satyagraha Civil Disobedience	2%
What VBD→ And what VBD	What was And what was Kenneth Swezey's job?	journalist sleep	2%

Transformation Rules: Sentiment Analysis

SEAR	Reviews / SEAs	f(x)	Flips
manufa \ film	Yeah, the <i>movie</i> film pretty much sucked .	Neg Pos	20/
movie → film	This is not <i>movie</i> film making .	Neg Pos	2%
film → movie	Excellent <i>film</i> movie .	Pos Neg	10/
	I'll give this <i>film</i> movie 10 out of 10!	Pos Neg	1%
ia \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ray Charles is was legendary .	Pos Neg	40/
is → was	It is was a really good show to watch .	Pos Neg	4%
#	Now this that is a movie I really dislike.	Neg Pos	10/
this → that	The camera really likes her in this that movie.	Pos Neg	1%

Adding a Sentence

Change	Search	Tasks
Add a Sentence	Domain knowledge, stochastic search	Question Answering

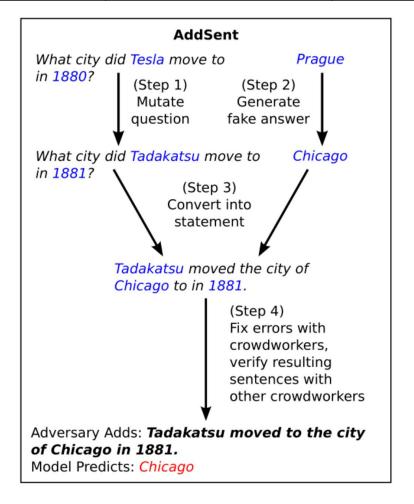
Article: Super Bowl 50

Paragraph: "Peyton Manning became the first quarter-back ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV."

Question: "What is the name of the quarterback who was 38 in Super Bowl XXXIII?"

Original Prediction: John Elway

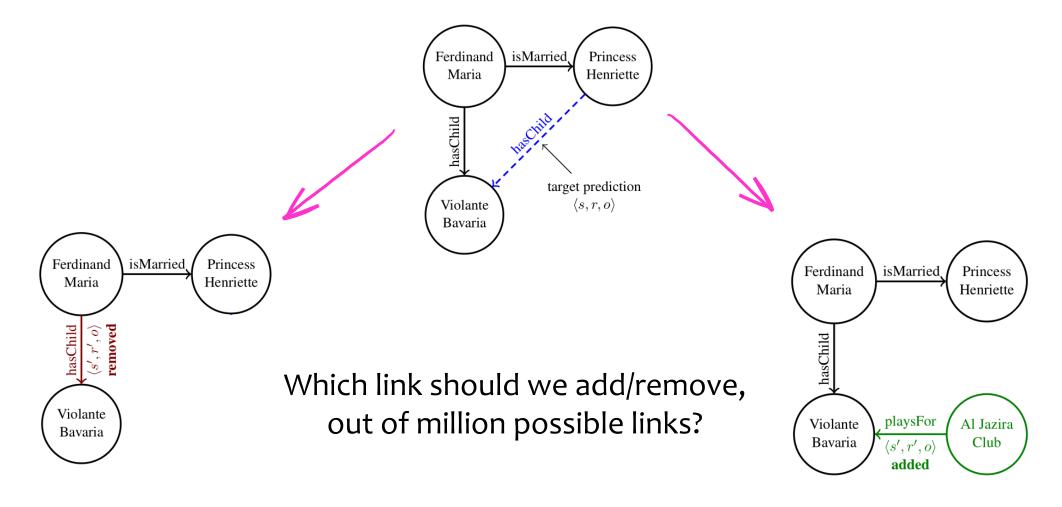
Prediction under adversary: Jeff Dean



Some Loosely Related Work

Use a broader notions of adversaries

CRIAGE: Adversaries for Graph Embeddings



"Should Not Change" / "Should Change"

How do dialogue systems behave when the inputs are perturbed in specific ways?

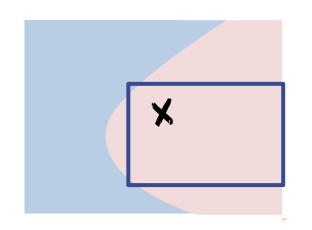
Should Not Change

- like Adversarial Attacks
- Random Swap
- Stopword Dropout
- Paraphrasing
- Grammatical Mistakes

Should Change

- Overstability Test
- Add Negation
- Antonyms
- Randomize Inputs
- Change Entities

Overstability: Anchors



Anchor

What is the mustache made of? banana

How many bananas are in the picture? 2

Identify the conditions under which the classifier has **the same prediction**

Overstability: Input Reduction

Remove as much of the input as you can without changing the prediction!

SQUAD Context	In 1899, John Jacob Astor IV invested \$100,000 for Tesla to further develop and produce a new lighting system. Instead, Tesla used the money to fund his Colorado Springs experiments.
Original Reduced Confidence	What did Tesla spend Astor's money on ? did $0.78 \rightarrow 0.91$

SNLI
Premise Well dressed man and woman dancing in the street

Original Two man is dancing on the street

Reduced dancing
Answer Contradiction
Confidence $0.977 \rightarrow 0.706$

VQA

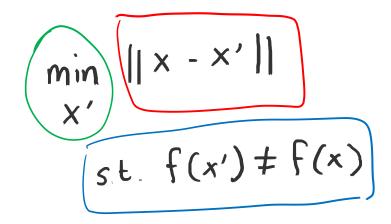
Original What color is the flower?

Reduced flower? Answer yellow

Confidence $0.827 \rightarrow 0.819$

Adversarial Examples for NLP

- Imperceivable changes to the input
- Unexpected behavior for the output
- Applications: security, evaluation, debugging



Challenges for NLP

- Effect: What is misbehavior?
- Change: What is a small change?
- Search: How do we find them?
- Evaluation: How do we know it's good?

Future Directions

- More realistic threat models
 - Give even less access to the model/data
- Defenses and fixes
 - Spell-check based filtering
 - Attack recognition: [Pruthi et al ACL 2019]
 - Data augmentation
 - Novel losses, e.g. [Zhang, Liang AISTATS 2019]
- Beyond sentences
 - Paragraphs, documents?
 - Semantic equivalency → coherency across sentences

References for Adversarial Examples in NLP

Relevant Work (roughly chronological)

- Sentences to QA: [Jia and Liang, EMNLP 2017] link
- Noise Breaks MT: [Belinkov, Bisk, ICLR 2018] link
- Natural Adversaries: [Zhao et al, ICLR 2018] link
- Syntactic Paraphrases: [lyyer et al NAACL 2018] link
- SEARs: [Ribeiro et al, ACL 2018] link
- Genetic Algo: [Alzantot et. al. EMNLP 2018] link
- Discrete Attacks: [Lei et al SysML 2019] link
- Hotflip/Hotflip MT: [Ebrahimi et al, ACL 2018, COLING 2018] link, link

Surveys

- Adversarial Attacks: [Zhang et al, arXiv 2019] link
- Analysis Methods: [Belinkov, Glass, TAACL 2019] link

More Loosely Related Work

- Anchors: [Ribeiro et al, AAAI 2018] link
- Input Reduction: [Feng et al, EMNLP 2018] link
- Graph Embeddings: [Pezeshkpour et. al. NAACL '19] link

Thank you!

Work with **Matt Gardner** and me

as part of

The Allen Institute for Artificial Intelligence in Irvine, CA

All levels: pre-docs, PhD interns, postdocs, and research scientists!

Sameer Singh

sameer@uci.edu @sameer_ Sameersingh.org

