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Agenda

• Introduction, Background, and GANs (William, 90 mins)

• Adversarial Examples and Rules (Sameer, 75 mins)

• Conclusion and Question Answering (Sameer and William, 15 
mins)
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Outline

• Background of the Tutorial

• Introduction: Adversarial Learning in NLP

• Adversarial Generation

• A Case Study of GANs in Dialogue Systems
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Rise of Adversarial Learning in NLP

• Through a simple ACL anthology search, we found that in 2018, 
there were 20+ times more papers mentioning “adversarial”, 
comparing to 2016. 

• Meanwhile, the growth of all accepted papers is 1.39 times 
during this period.

• But if you went to CVPR 2018 in Salt Lake City, there were 
more than 100 papers on adversarial learning (approximately 
1/3 of all adv. learning papers in NLP). 
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Questions I’d like to Discuss

• What are the subareas of deep adversarial learning in NLP?

• How do we understand adversarial learning?

• What are some success stories?

• What are the pitfalls that we need to avoid?
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Opportunities in Adversarial Learning

• Adversarial learning is an interdisciplinary research area, and it 
is closely related to, but limited to the following fields of study:

• Machine Learning

• Computer Vision

• Natural Language Processing

• Computer Security

• Game Theory

• Economics
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Adversarial Attack in ML, Vision, & 
Security 

• Goodfellow et al., (2015)
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Physical-World Adversarial Attack / 
Examples (Eykholt et al., CVPR 2018)
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Success of Adversarial Learning

CycleGAN (Zhu et al., 2017)
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Failure Cases

CycleGAN (Zhu et al., 2017)
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Success of Adversarial Learning 

GauGAN (Park et al., 2019)11



Deep Adversarial Learning in NLP

• There were some successes of GANs in NLP, but 
not so much comparing to Vision.

• The scope of Deep Adversarial Learning in NLP 
includes:

• Adversarial Examples, Attacks, and Rules

• Adversarial Training (w. Noise)

• Adversarial Generation

• Various other usages in ranking, denoising, & domain adaptation.
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Adversarial Examples

• One of the more popular areas of adversarial learning in NLP.

• E.g., Alzantot et al., EMNLP 2018

14



Adversarial Attacks (Coavoux et al., EMNLP 
2018)
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The main classifier 

predicts a label y from 

a text x, the attacker 

tries to recover some 

private information z 

contained in x from the 

latent representation 

used by the main 

classifier.



Adversarial Training

• Main idea: 
• Adding noise, randomness, or adversarial loss in optimization.

• Goal: make the trained model more robust.
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Adversarial Training:  A Simple Example

• Adversarial Training for Relation Extraction
• Wu, Bamman, Russell (EMNLP 2017).

• Task: Relation Classification.

• Interpretation: Regularization in the Feature Space.
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Adversarial Training for Relation 
Extraction

Wu, Bamman, Russell (EMNLP 2017).
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Adversarial Training for Relation 
Extraction

Wu, Bamman, Russell (EMNLP 2017).
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GANs (Goodfellow et al., 2014)

• Two competing neural networks: generator & discriminator

the classifier trying to 
detect the fake sample

forger trying to produce 
some counterfeit material

Image: https://ishmaelbelghazi.github.io/ALI/21



GAN Objective
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D(x): the probability that x came from 
the data rather than generator

Goodfellow, et al., “Generative adversarial networks,” in NIPS, 2014.
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GAN Training Algorithm
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Discriminator

Generator

Goodfellow, et al., “Generative adversarial networks,” in NIPS, 2014.



GAN Equilibrium

• Global optimality

• Discriminator

• Generator

24Goodfellow, et al., “Generative adversarial networks,” in NIPS, 2014.
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Major Issues of GANs 
• Mode Collapse (unable to produce diverse samples)
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Major Issues of GANs in NLP

• Often you need to pre-train the generator and discriminator w. 
MLE

• But how much?

• Unstable Adversarial Training
• We are dealing with two networks / learners / agents

• Should we update them at the same rate?

• The discriminator might overpower the generator.

• With many possible combinations of model choice for generator 
and discriminator networks in NLP, it could be worse.
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Major Issues of GANs in NLP

• GANs were originally designed for images
• You cannot back-propagate through the generated X

• Image is continuous, but text is discrete (DR-GAN, Tran et al.,  CVPR 
2017).
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SeqGAN: policy gradient for generating 
sequences
(Yu et al., 2017)
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Training Language GANs from Scratch

• New Google DeepMind arxiv paper (de Masson d’Autume et al., 
2019) 

• Claims no MLE pre-trainings are needed.

• Uses per time-stamp dense rewards.

• Yet to be peer-reviewed and tested.
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Why shouldn’t NLP give up on GAN?

• It’s unsupervised learning.

• Many potential applications of GANs in NLP.

• The discriminator is often learning a metric.

• It can also be interpreted as self-supervised learning (especially 
with dense rewards).
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Applications of Adversarial Learning in 
NLP
• Social Media (Wang et al., 2018a; Carton et al., 2018)

• Contrastive Estimation (Cai and Wang, 2018; Bose et al., 2018)

• Domain Adaptation (Kim et al., 2017; Alam et al., 2018; Zou et al., 
2018; Chen and Cardie, 2018; Tran and Nguyen, 2018; Cao et al., 
2018; Li et al., 2018b)

• Data Cleaning (Elazar and Goldberg, 2018; Shah et al., 2018; Ryu et 
al., 2018; Zellers et al., 2018)

• Information extraction (Qin et al., 2018; Hong et al., 2018; Wang et 
al., 2018b; Shi et al., 2018a; Bekoulis et al., 2018)

• Information retrieval (Li and Cheng, 2018)

• Another 18 papers on Adversarial Learning at NAACL 2019!

31



GANs for Machine Translation

• Yang et al., NAACL 2018

• Wu et al., ACML 2018
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SentiGAN (Wang and Wan, IJCAI 2018)
Idea: use a mixture of generators and a multi-class discriminator.
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No Metrics Are Perfect: 
Adversarial Reward Learning 
(Wang, Chen et al., ACL 2018)
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AREL Storytelling Evaluation

• Dataset: VIST (Huang et al., 2016).
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DSGAN: Adversarial Learning for Distant 
Supervision IE (Qin et al., ACL 2018)
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DSGAN: Adversarial Learning for Distant 
Supervision IE (Qin et al., ACL 2018)
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KBGAN: Learning to Generate High-Quality 
Negative Examples (Cai and Wang, NAACL 
2018)

Idea: use adversarial learning to iteratively learn better 
negative examples.
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What Should Rewards for Good Dialogue Be
Like ?
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Turing Test

Reward for Good Dialogue
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How old are you ?

I don’t know what you are
talking about

I’m 25.

A human evaluator/ judge

Reward for Good Dialogue
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How old are you ?

I don’t know what you are
talking about

I’m 25.

Reward for Good Dialogue
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How old are
you ?

I don’t know what you are
talking about

I’m 25.

P= 90% human generated

P= 10% human generated

Reward for Good Dialogue
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Adversarial Learning in
Image Generation (Goodfellow et al., 2014)
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Model Breakdown
Generative Model (G)

how are you ?

I’m fine . EOS

Encoding Decoding

eos I’m fine .

46



Model Breakdown
Generative Model (G)

how are you ?

I’m fine . EOS

Encoding Decoding

eos I’m fine .

Discriminative Model (D)

how are you ? eos I’m fine .

P= 90% human generated
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Model Breakdown
Generative Model (G)

how are you ?

I’m fine . EOS

Encoding Decoding

eos I’m fine .

Discriminative Model (D)

how are you ? eos I’m fine .

Reward P= 90% human generated
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Policy Gradient

REINFORCE Algorithm (William,1992) 

Generative Model (G)

how are you ?

I’m fine EOS

Encoding Decoding

eos I’m fine .
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Adversarial Learning for Neural Dialogue Generation

Update the 
Discriminator 

Update the 
Generator

The discriminator forces the 
generator to produce 
correct responses
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Human Evaluation

The previous RL model only perform
better on multi-turn conversations
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Results: Adversarial Learning Improves Response Generation

Human Evaluator 

vs  a vanilla generation model

Adversarial 
Win

Adversarial 
Lose

Tie

62% 18% 20%
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Sample response

Tell me ... how long have you had this falling sickness ? 

System Response
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Sample response

Tell me ... how long have you had this falling sickness ? 

System Response

Vanilla-Seq2Seq I don’t know what you are
talking about.
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Sample response

Tell me ... how long have you had this falling sickness ? 

System Response

Vanilla-Seq2Seq I don’t know what you are
talking about.

Mutual Information I’m not a doctor.
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Sample response

Tell me ... how long have you had this falling sickness ? 

System Response

Vanilla-Seq2Seq I don’t know what you are
talking about.

Mutual Information I’m not a doctor.

Adversarial Learning A few months, I guess.
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Self-Supervised Learning meets Adversarial 
Learning

• Self-Supervised Dialog Learning (Wu et al., ACL 2019)

• Use of SSL to learn dialogue structure (sequence ordering).
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Self-Supervised Learning meets Adversarial 
Learning

• Self-Supervised Dialog Learning (Wu et al., ACL 2019)

• Use of SSN to learn dialogue structure (sequence ordering).

• REGS: Li et al., (2017) AEL: Xu et al., (2017)
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Conclusion

• Deep adversarial learning is a new, diverse, and inter-
disciplinary research area, and it is highly related to many 
subareas in NLP.

• GANs have obtained particular strong results in Vision, but yet 
there are both challenges and opportunities in GANs for NLP.

• In a case study, we show that adversarial learning for dialogue 
has obtained promising results.

• There are plenty of opportunities ahead of us with the current 
advances of representation learning, reinforcement learning, 
and self-supervised learning techniques in NLP.
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UCSB Postdoctoral Scientist 
Opportunities

• Please talk to me at NAACL, or email william@cs.ucsb.edu.
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Thank you!

• Now we will take an 30 mins break.
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