
WOLFE: Strength Reduction and Approximate
Programming for Probabilistic Programming

Sebastian Riedel
University College

London, UK
s.riedel@cs.ucl.ac.uk

Sameer Singh
University of Washington,

Seattle, USA
sameer@cs.washington.edu

Vivek Srikumar
Stanford University,

Stanford, USA
svivek@cs.stanford.edu

Tim Rocktäschel
University College

London, UK
t.rocktaschel@cs.ucl.ac.uk

Larysa Visengeriyeva
Technische Universität

Berlin, Germany
visenger@gmail.com

Jan Noessner
University of Mannheim,

Germany
jan@informatik.uni-mannheim.de

Abstract

Existing modeling languages lack the expressiveness or ef-
ficiency to support many modern and successful machine
learning (ML) models such as structured prediction or ma-
trix factorization. We present WOLFE, a probabilistic pro-
gramming language that enables practitioners to develop such
models. Most ML approaches can be formulated in terms
of scalar objectives or scoring functions (such as distribu-
tions) and a small set of mathematical operations such as
maximization and summation. In WOLFE, the user works
within a functional host language to declare scalar functions
and invoke mathematical operators. The WOLFE compiler
then replaces the operators with equivalent, but more efficient
(strength reduction) and/or approximate (approximate pro-
gramming) versions to generate low-level inference or learn-
ing code. This approach can yield very concise programs,
high expressiveness and efficient execution.

Introduction
Existing probabilistic programming languages face a trade-
off between the expressivity of the models they represent
and complexity of the modeling process for the user. To-
wards one end of the complexity spectrum, we have lan-
guages that are limited (by design and often intentionally) in
the types of machine learning models and approaches they
support. For example, Church (Goodman et al. 2008) is
a powerful tool for generative models, but discriminatively
trained structured prediction models are difficult to realize.
Languages such as Markov Logic Networks (Richardson
and Domingos 2006) can train discriminative models, but
fail to support paradigms such as matrix or tensor factoriza-
tion. In contrast, libraries such as FACTORIE (McCallum,
Schultz, and Singh 2009) can be used to create arbitrarily
rich models, but the burden is often on the user to provide
efficient algorithms and data structures to operate such mod-
els, requiring machine learning expertise. There is a need for
an extensible probabilistic programming language that can

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

express a variety of models and algorithms while still re-
taining the simplicity and conciseness of existing paradigm-
specific, declarative languages.

In this paper, we introduce WOLFE,1 a functional prob-
abilistic programming language that allows users to define
rich models in a concise way (akin to mathematical expres-
sions seen in machine learning papers) which are then com-
plied into efficient implementations, thus combining ease of
use with expressiveness and efficient computation. WOLFE
is based on a formulation that is common to many ma-
chine learning algorithms and models: real-valued/scalar
functions (for example corresponding to density functions,
energy functions, discriminative scores, and training objec-
tives) and mathematical operators that operate upon them
(most prominently maximization, summation, and integra-
tion). The user constructs the relevant scalar functions in
a functional host programming language,2 and uses math-
ematical operators such as argmax to operate upon them,
thus enabling a rich set of concisely defined ML models.
The semantics of a WOLFE program is defined by the math-
ematical operators, and further, each WOLFE program is an
executable program in the host language (albeit with brute
force default implementations of the operators that are often
intractable).

To ensure efficiency, the WOLFE compiler analyzes the
user provided scalar function definitions and generates opti-
mized source code in the host language. WOLFE performs
two types of optimizations: strength reduction to replace
brute-force operator implementations (such as exhaustive
search) with equivalent but more efficient versions (such as
Max-Product in a junction tree); and approximate program-
ming where operator calls are replaced by efficient approx-
imations (for example parallelized stochastic optimization).
This separation of program semantics and implementation
provides a number of crucial benefits: (1) The user’s fo-
cus is on the mathematical formulation using the host lan-

1http://www.wolfe.ml
2Currently, we use Scala (Odersky, Spoon, and Venners 2008).

Statistical Relational AI: Papers from the AAAI-14 Workshop

100

guage data structures, without distractions from efficiency
or implementation details. (2) It allows inspection of the
program structure that can lead to significant optimizations,
(3) It enables reuse of existing inference and learning imple-
mentations from other probabilistic language implementa-
tions, for example we use the FACTORIE optimization pack-
age (Passos, Vilnis, and McCallum 2013), (4) By generating
source code, WOLFE utilizes further specific optimizations
from the host language compiler, and last, (5) The WOLFE
interface, consisting of a few mathematical operators, is
likely to remain fixed, and thus development will focus on
further compiler optimizations, resulting in full backwards-
compatibility of user programs with future WOLFE versions.

Wolfe
WOLFE models consist of a definition of the sample space
and a scalar function that assigns probabilities (or, more gen-
erally, unnormalized scores) to each sample. A WOLFE pro-
gram additionally consists of a set of WOLFE operators that
are applied to these two components of the WOLFE model.

Sample Space
A sample space in WOLFE is a collection of objects of some
type T , which represent the set of possible worlds for the
model. In Scala we use objects of type Iterable[T]
to represent this collection. WOLFE provides helper meth-
ods to compose rich sample spaces over primitive objects
and algebraic data types (ADTs).3 For example, for the
Sentence type in listing 1 the function space defines
the set of all Sentence objects as the cross product of all
possible word and tag sequences. Notice that this sample
space may have word and tag sequences of different lengths.
However, using a filter on the collection we can con-
strain sentences to be consistent.

Scalar Function
The second part of a WOLFE model is a scalar function that
can be used to define probabilities, densities, loss functions,
etc. over the sample space. In Scala, such functions are de-
fined by T => Double, allowing use of existing or user-
written functions. In listings 1 and 3 the functions denoted
by s are (parametrized) examples.

Operators
WOLFE provides several operators that take the sam-
ple space and the scalar functions as curried arguments,
i.e. (space:Iterable[T])(obj:T=>Dist). The
query operator, similar to that in Church, generates a sam-
ple from space using the (unnormalized) distribution as
defined by obj . The argmax operator returns an argu-
ment in space that maximizes obj . The sum operator
applies obj to every element in space and sums up the
results. As we will see in the examples, these operators can
be used to represent a variety of inference and learning ob-
jectives.

3In Scala ADTs are defined using case classes and sealed traits;
they can represent complex structures such as maps and lists

Transformations
Each operator comes with a default brute-force implemen-
tation in Scala, for example the argmax performs a lin-
ear search over the space to find the object that maxi-
mizes obj . However, for most models of interest these de-
fault implementations will not be tractable. Instead, WOLFE
replaces the implementation of these operators with tailor-
made algorithms that leverage structure (by examining the
definitions of the sample space and the model). We cur-
rently perform two types of transformations (implemented
using Scala macros).

Factor Graph: For operators and sample spaces that rep-
resent inference, WOLFE represents the operator as infer-
ence on a factor graph (Kschischang, Frey, and Loeliger
2001). WOLFE first analyzes the Scala Abstract Syntax
Tree (AST) that defines the sample space (space) to dis-
cover the random variables of the graph. It finds a compo-
sitional isomorphism between the sample space and a fac-
tor graph in which each value in the space corresponds to
one assignment of the variables in the factor graph, and vice
versa. Next the AST of the obj function is divided into fac-
tors according occurrence of either sum or prod operators
(or quantified versions of these). For each factor we find the
nodes that affect the value of the factor, using the aforemen-
tioned isomorphism. Given this factor graph that represents
the obj over the space , we can run message passing or
sampling algorithms that exploit the graph’s structure, pro-
viding an efficient (but often approximate) implementation
of the original operator.

Gradient Optimizer: Many important scalar functions in
machine learning are defined over continuous vector spaces,
for example learning the parameters of a model. In WOLFE
we provide support for efficient argmax execution over
such functions, provided that we can analytically derive
their gradients. For argmax calls that involve continuous
space , WOLFE takes the AST of the obj function and
applies derivation rules to find a gradient or sub-gradient.
To perform the argmax operation WOLFE then uses the ef-
ficient FACTORIE optimization library to perform gradient-
based search such as SGD, LBFGS or Perceptron.

For both of the above optimizations, WOLFE automati-
cally selects the algorithm to use, and chooses the various
hyper-parameters, by performing cursory inspection of the
objective and the sample space. However, to allow expert
users to inform this selection, WOLFE provides a library of
Scala annotations that can be used in the WOLFE program
to select the algorithm, and to specify the various parameters
associated with it, for each call to the operators.

Examples
We give a few examples of WOLFE models and sketch how
strength reduction and approximate programming can be
lead efficient learning and inference. Note that the code
snippets here are primarily for illustration of how a variety

101

case class Sentence(words: Seq[String], tags: Seq[String])

//sample space

def space = all(Sentence){seqs(strings) x seqs(tagSet)}

// feature vector for a sentence

def f(s:Sentence):Vector = {

val n = s.words.size

sum(0 until n) { i=> oneHot(s.words(i)->s.tags(i))} +

sum(0 until n-1) { i => oneHot(s.tags(i)->s.tags(i+1))}

}

// model to score a sentence

def s(w:Vector)(s:Sentence):Double = w dot f(s)

Listing 1: Linear-chain CRF: oneHot(key) is a vector
where the component at index key is 1 and 0 elsewhere.

// MAP inference

def h(w:Vector)(x:Sentence):Sentence =

argmax(space)(obs(_)==obs(x)){ d=>sw(d) }

// Loss over training data

def loss(data:Seq[Sentence])(w:Vector):Double =

sum(data){ d=>sw(hw(d))-sw(d) }

// Parameter estimation

def learn(data:Seq[Sentence]) =

argmin(vectors){ w => lossdata(w) }

Listing 2: Inference and Learning for the model in Listing
1. obs(x) is the sequence of observations (words) in x .

of models may be expressed in WOLFE; the details of the
syntax are not crucial for understanding, and may, in fact,
be subject to change.

Linear Chains Listing 1 shows the definition of a linear
chain Part-of-Speech tagger in WOLFE, together with infer-
ence and learning code necessary to use the model in Listing
2. The code is equivalent to the following formulation. We
first define a feature function over a sentence using one-hot
vectors ei (vector where component at index i is 1, 0 else-
where) with a rich index set:

f(d) =
n∑
i

edwordi
,dtagi

+
n−1∑
i

edtagi
,dtagi+1

With a weight vector w this yields a linear model:

sw(d) = 〈w, f(d)〉 .

In listing 2 maximum a-posteriori (MAP) inference and
learning are defined in terms of argmax and argmin op-
erators. For example, the MAP predictor h corresponds to

hw(x) = argmax
d:dx=x

sw(d)

i.e. it finds the highest scoring structure d that agrees with
the observed part of the evidence x we condition on. Be-
fore execution of the program, WOLFE transforms the lin-
ear model into a factor graph isomorphic to the Sentence
data structure, and to the factorization of the model s , dur-
ing compilation time. Then WOLFE replaces each call to h
with message passing on this factor graph that computes the
exact solution, thus demonstrating strength reduction.

case class UserItem(user: User, item: Item, rating: Double)

// model

def s(w:Vector)(u:UserItem) =

sum(0 until k){ i => w(u.item->i)*w(u.user->i) } +

sum(u.user.items){ i => w(i->u.item) }

// training loss over observed cells

def loss(data:Seq[UserItem])(w:Vector) =

sum(data){ d => pow2(d.rating - sw(d))}

Listing 3: Matrix Factorization: A collaborative filtering
model including a neighborhood term.

The function loss in Listing 2 defines a perceptron style
training loss. The function learn finds a minimizer of this
loss. In this case WOLFE generates code that calculates the
gradient of the loss and then performs gradient descent on
it, demonstrating approximate programming. To calculate
the gradient at any point of optimization, WOLFE performs
MAP inference as described above.

Matrix Factorization Listing 3 shows a recommender
system that combines a matrix factorization model (first line
of s) with a neighborhood model (Koren 2008) that cap-
tures item-item correlations directly. WOLFE replaces calls
to argmin(loss(data)) with code that calculates the
gradient of the loss and runs stochastic gradient descent.

Generative Models: Latent Dirichlet Analysis Listing 4
illustrates a Wolfe program for a topic model using Latent
Dirichlet Analysis (Blei, Ng, and Jordan 2003).4 Since the
underlying model is generative, the model (as defined by
lda) is easier to write as the probability of the assignment

to all the variables, instead of specifying the unnormalized
energy functions as in the examples so far. The additional
functions used in this example are dir for the Dirichlet
density, cat for the categorical distribution, and prod is
the product over the arguments (as opposed to the sum).
WOLFE replaces inference calls code that integrates out the
unobserved variables (ϕ and θ) with an efficient Gibbs sam-
pling implementation.

Related Work
WOLFE shares a number of aspects of different probabilistic
programming languages. Church (Goodman et al. 2008), its
recently introduced extensions Venture (Mansinghka, Sel-
sam, and Perov 2014) and Fun (Borgström et al. 2011) are
similar in that they make the separation between user pro-
gram and efficient implementations via program (and ex-
ecution) analysis; however they are limited to generative
models defined through generative stories, not scalar func-
tions. Infer.NET (Minka et al. 2010) combines program
analysis and host compiler optimizations for efficient sam-
pling and variational inference, but is restricted to gener-
ative models that are specified using custom data struc-
tures. Work on MLNs (Richardson and Domingos 2006)
and ProbLog (Raedt, Kimmig, and Toivonen 2007) provide

4Note that generative models are not supported in the current
version, but will be included in the future versions of WOLFE.

102

case class Token(topic:Int,word:String)

case class Doc(theta:Map[Int,Double],tokens:Seq[Token])

case class World(phi:Seq[Map[String,Double]],docs:Seq[Doc])

// model computes the probability of the input

def lda(w: Vector)(world:World):Double = {

import world._

prod(phi) { dir(_,w(’beta))} *
prod(docs) { d =>

dir(d.theta, w(’alpha)) *
prod(d.tokens) {t =>

cat(t.topic, d.theta) *
cat(t.word, phi(t.topic))

}

}

}

Listing 4: Topic Model: The model here computes the
probability given values for all the variables. Inference
(not shown) computes distribution over topic assignments
(t .topic) given the documents and the hyperparameters
w by summing out phi and theta .

a useful logic-based declarative language that unfortunately
cannot concisely express many of the models used in prac-
tice. Learning Based Java (Rizzolo and Roth 2010) provides
a declarative language for specifying discriminative models,
but restricts the expressiveness of the models that can be de-
fined. Although FACTORIE (McCallum, Schultz, and Singh
2009) is able to express a wide variety of models, it often re-
quires the user to additionally define data structures and im-
plementations for efficient inference. WOLFE, on the other
hand, allows the user to specify arbitrarily complex models
(concisely by using host language syntax) while still pro-
viding efficient implementation via strength reduction and
approximate programming.

Conclusions

We have presented WOLFE, a rich language for declarative
ML modeling. WOLFE uses two ingredients: a functional
host language to define real-valued functions in, and a com-
piler that transforms mathematical operations on these func-
tions into efficient inference and learning code by strength
reduction and approximate programming. WOLFE thus uses
mathematics as the unifying machine learning language, and
aims to make code look similar to the “model” section of pa-
pers that use machine learning. This approach enables users
to define expressive models declaratively and shields them
from implementation details.

Acknowledgments

This work was supported in part by Microsoft Research
through its PhD Scholarship Programme, and in part by the
TerraSwarm Research Center, one of six centers supported
by the STARnet phase of the Focus Center Research Pro-
gram (FCRP) a Semiconductor Research Corporation pro-
gram sponsored by MARCO and DARPA.

References
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent
dirichlet allocation. the Journal of machine Learning re-
search 3:993–1022.
Borgström, J.; Gordon, A. D.; Greenberg, M.; Margetson,
J.; and Van Gael, J. 2011. Measure transformer semantics
for bayesian machine learning. In Programming Languages
and Systems. Springer. 77–96.
Goodman, N. D.; Mansinghka, V. K.; Roy, D.; Bonawitz,
K.; and Tenenbaum, J. B. 2008. Church: a language for
generative models. In Uncertainty in Artificial Intelligence.
Koren, Y. 2008. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceedings of
the 14th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, KDD ’08, 426–434. New
York, NY, USA: ACM.
Kschischang, F. R.; Frey, B. J.; and Loeliger, H. A. 2001.
Factor graphs and the sum-product algorithm. IEEE Trans-
actions of Information Theory 47(2):498–519.
Mansinghka, V.; Selsam, D.; and Perov, Y. 2014. Venture: a
higher-order probabilistic programming platform with pro-
grammable inference. ArXiv e-prints.
McCallum, A.; Schultz, K.; and Singh, S. 2009. Fac-
torie: Probabilistic programming via imperatively defined
factor graphs. In Bengio, Y.; Schuurmans, D.; Lafferty, J.;
Williams, C. K. I.; and Culotta, A., eds., Advances in Neural
Information Processing Systems 22. 1249–1257.
Minka, T.; Winn, J. M.; Guiver, J. P.; and Knowles, D. A.
2010. Infer.NET 2.4. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.
Odersky, M.; Spoon, L.; and Venners, B. 2008. Program-
ming in Scala. artima.
Passos, A.; Vilnis, L.; and McCallum, A. 2013. Optimiza-
tion and learning in factorie. In NIPS Workshop on Opti-
mization for Machine Learning (OPT).
Raedt, L. D.; Kimmig, A.; and Toivonen, H. 2007. Problog:
A probabilistic prolog and its application in link discovery.
In International Joint Conference on Artificial Intelligence
(IJCAI), 2462–2467.
Richardson, M., and Domingos, P. 2006. Markov logic
networks. Machine Learning 62:107–136.
Rizzolo, N., and Roth, D. 2010. Learning based java for
rapid development of nlp systems. In Language Resources
and Evaluation Conference (LREC).

103

