
Wolfe
Strength Reduction and Approximate Programming
for Probabilistic Programming

Sebastian Riedel
University College London

Sameer Singh
University of Washington

Vivek Srikumar
Stanford University

Tim Rocktäschel
University College London

Larysa Visengeryeva
Technische Universität Berlin

Jan Noessner
University of Mannheim

www.wolfe.ml
Yet another PPL?

Existing PPLs pick a "representation":
 • Undirected Graphical Models
 • Bayesian Models
 • Markov Logic Networks
 • Other Logic-based formulations

Advantages:
+ Precisely defines the semantics
+ Easy to compile/optimize for efficiency

But it can be restrictive:
- Practical models may not be possible
- Cannot be future-proofed
- May not be concise for all applications
- Cannot easily combine with other PPLs

"Bring probabilistic programming as
close to the underlying math as

possible."

- Math is concise, precise, universal
- Can represent current & future models
- Allows combination of different

paradigms in the same framework

Wolfe
Akin to machine learning math, a Wolfe

probabilistic program consists of a set of
scalar functions (for the model and loss),

and a small set of operators that are
applied to them to define inference/

learning. Given such a mathematical
description in a functional language,

Wolfe converts the operator applications to
efficient runtime code.

Components

Search Space
Define all possible values.

Scalar Functions
Define real-value functions over
the search space to define
models (energy or density) and
objectives.

Operators
Combine model and objectives
with search space to define
inference and learning.
Operators are: argmax, argmin,
sum, map, logZ, and expect

Wolfe Code

case1class!Chain(x:Seq[String],y:Seq[String])
def!chains!=!seqs(strings)!x!seqs(strings)

def!features(c:!Chain)!=!{
!!val!n!=!s.x.size!!!!
!!sum(0!until!n)!{
!!!!i=>oneHot('obsD>s.x(i)D>s.y(i))}!+
!!sum(0!until!nD1)!{
!!!!i=>oneHot('transD>s.y(i)D>s.y(i+1))}
}
def!m(w:!Vector)(s:!Chain)!=!w!dot!features(s)

def!h(w:!Vector)(x:!Seq[String])!=!
!!!!argmax(chains!st!_.x==x){m(w)}
def!loss(data:!Seq[Chain])(w:!Vector)!=!
!!!!sum(data)!{!s!=>!m(w)(h(w)(s.x))!D!m(w)(s)!}

val!(train,test)!=!NLP.conll2000Data()
val!w!=!argmin(vectors)!{!loss(train)!}
val!predicted!=!map(test)!{h(w)}

Efficiency
Wolfe maintains efficiency due to:

• Analyzes code during compile time
 - no overhead at runtime

• Generated code is natively compiled
 - enables Scala compiler optimizations
• Allows users to inject customizations

 - using Scala @Annotations
• Uses efficient implementations

 - Gurobi for ILP, Factorie for learning
 - can be multi-core, GPUs, etc.

Current Status
Currently, compiles to a factor graph.
Inference:

• Sum/Max-Product BP
• Junction Tree Inference
• Gibbs Sampling
• Integer Linear Programming

Learning:
• Structure perceptron
• Batch Methods (LBFGS)
• Stochastic Approaches:

 SGD, AdaGrad, AROW, etc.

Future Work
 • More inference & learning methods
 - generative, matrix factorization

• Deeper code analysis
 - more sophisticated pattern matching

• Use even more existing packages
 - efficient inference implementations

• Automatic derivatives
 - compute gradients automatically

• Interactive Debugging
 - browser-based visualization

Linear Chains

c = {. . . (x
i

, y

i

) . . .}, c 2 C

� : C ! Rd

�(c) =

nX

i=0

e

obs,x

c
i ,y

c
i
+

nX

i=0

e

trans,y

c
i ,y

c
i+1

m

w

(c) = w · �(c)
where, w : Rd

,m : Rd ⇥ C ! R

h

w

(x) = argmax

8c2C,xc
=x

m

w

(c)

L(C, w) =

X

c2C

m

w

(h

w

(x

c

))�m

w

(c)

w

⇤
= argmin

8w2Rd

L(C, w)

Ĉ = 8
x2Xthw

⇤
(x)

