

Yet another PPL?

Existing PPLs pick a "representation":

- Undirected Graphical Models
- Bayesian Models
- Markov Logic Networks
- Other Logic-based formulations

Advantages:

- + Precisely defines the semantics
- + Easy to compile/optimize for efficiency

But it can be restrictive:

- Practical models may not be possible
- Cannot be future-proofed
- May not be concise for all applications
- Cannot easily combine with other PPLs

"Bring probabilistic programming as close to the underlying math as possible."

- Math is concise, precise, universal
- Can represent current & future models
- Allows combination of different paradigms in the same framework

Wolfe

Akin to machine learning math, a Wolfe probabilistic program consists of a set of scalar functions (for the model and loss), and a small set of operators that are applied to them to define inference/ learning. Given such a mathematical description in a functional language, Wolfe converts the operator applications to efficient runtime code.

Scalar Functions Define real-value functions over the search space to define models (energy or density) and objectives.

Operators Combine model and objectives with search space to define inference and learning. Operators are: argmax, argmin, sum, map, logZ, and expect

Strength Reduction and Approximate Programming for Probabilistic Programming

Sebastian Riedel University College London

Tim Rocktäschel University College London

Components

Search Space Define *all* possible values.

Efficiency

- Wolfe maintains efficiency due to: Analyzes code during **compile time** - no overhead at runtime Generated code is natively compiled - enables Scala compiler optimizations Allows users to inject customizations - using Scala @Annotations
 - Uses efficient implementations
 - Gurobi for ILP, Factorie for learning
 - can be multi-core, GPUs, etc.

Linear Chains

- $c = \{ \dots (x_i, \cdot) \}$
- $\phi(c) = \sum e_{\text{obs}, x_i^c, y_i^c} + \sum$ m_u where, $w : \mathcal{R}^d, m$

$$h_w(x) = \mathop{\mathrm{a}}_{orall c}$$
 $L(\mathbf{C}, w) = \sum_{c \in \mathbf{C}} m_w (h_w)$
 $w^* = \mathop{\mathrm{arg}}_{orall u}$
 $\hat{\mathbf{C}} =$

Current Status

Currer	ntly, co
Inference:	
•	Sum
•	Junc
•	Gibb
•	Integ
Learni	ng:
•	Struc
•	Batch
•	Stock

SGD, AdaGrad, AROW, etc.

Sameer Singh

University of Washington

Vivek Srikumar Stanford University

Larysa Visengeryeva Technische Universität Berlin

Wolfe Code

$, y_i) \ldots \}, c \in \mathcal{C}$	<pre>case class Chain(x:Seq[String],y: def chains = seqs(strings) x seqs</pre>
$\phi: \mathcal{C} \to \mathcal{R}^d$ $f = e_{\operatorname{trans}, y_i^c, y_{i+1}^c}$ f = 0 $f = (c) = w \cdot \phi(c)$ $: \mathcal{R}^d \times \mathcal{C} \to \mathcal{R}$	<pre>def features(c: Chain) = { val n = s.x.size sum(0 until n) { i=>oneHot('obs->s.x(i)->s.y(i sum(0 until n-1) { i=>oneHot('trans->s.y(i)->s.y } def m(w: Vector)(s: Chain) = w do </pre>
$rg \max_{c \in \mathcal{C}, x^c = x} m_w(c)$ $(x^c)) - m_w(c)$	<pre>def h(w: Vector)(x: Seq[String]) argmax(chains stx==x){m(w) def loss(data: Seq[Chain])(w: Vec sum(data) { s => m(w)(h(w)(s.</pre>
$ g \min_{w \in \mathcal{R}^d} L(\mathbf{C}, w) $	<pre>val (train,test) = NLP.conll2000D</pre>

 $\hat{\mathbf{C}} = \forall_{x \in \mathbf{X}_t} h_{w^*}(x)$

val w = argmin(vectors) { loss(train) } val predicted = map(test) {h(w)}

- mpiles to a factor graph.
- /Max-Product BP
- ction Tree Inference
- s Sampling
- ger Linear Programming
- cture perceptron
- h Methods (LBFGS)
- hastic Approaches:

Future Work

- More inference & learning methods - generative, matrix factorization
- Deeper code analysis - more sophisticated pattern matching
- Use even more existing packages - efficient inference implementations
- Automatic derivatives - compute gradients automatically
- Interactive Debugging
 - browser-based visualization

Jan Noessner University of Mannheim

Seq[String]) (strings)

-))} + (i+1))
- ot features(s)

Data()