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Abstract— This paper demonstrates a learning mechanism for
complex tasks. Such tasks may be inherently expensive to learn
in terms of training time and/or cost of obtaining each training
pattern. Learning simple, safe tasks and extending them to more
complex tasks can cause faster convergence to the solution. This
method has been formalized and demonstrated on a simulated
multiple robot (multi-robot) scenario. The objective is to effec-
tively search out and destroy stationary hostile agents present in
an unknown urban terrain map. Using the presented method, the
robots learn how to effectively map the area, and then improve
their learning modules for the complex task. The robots are
simple behavioral agents with minimal communication.

I. INTRODUCTION

This paper aims to improve learning for robots faced with
complex tasks. Training for such tasks is very tedious and
time consuming since each robot has to be trained upon many,
varied instances. Creating this large number of instances could
be costly in terms of monetary value and time.

It should be more efficient to train the robot on a simpler
task, for which creating training instances are cheaper and
faster, and then transfer the learning to the more complicated
task. The creation of a “simpler” task from the complex task
requires considerable task understanding since the number of
states and actions must be reduced. This task abstraction must
follow a few rules in order to perform efficiently.

Once a simpler task has been determined, the robot learns
to optimally perform this task. Then, using prior knowledge
regarding the relationship between the simple and the final
task, the learned module is extended to include more states
and actions. This extended module is suitable for learning the
final task. Continued learning with the extended module allows
the final task to reach an optimal solution faster, reducing the
cost incurred when learning without the intermediate step. This
paper describes the method and demonstrates its efficiency on
a multiple robot task.

The objective of the multiple robot team is to remove
a number of stationary hostile agents in an interior urban
scenario. The urban map search is the simple task on which
the robots are first trained, after which they are deployed onto
the maps containing hostile agents.

The following section discusses the related literature. Sec-
tion III formalizes the method to extend learning. Section
IV provides detailed task descriptions, along with the robot
representation. Section V describes the task simplification, the
learning methods, and other related issues. Section VI decribes

the experiments and presents the results. Section VII contains
a discussion regarding the contributions of this work. The
conclusion is provided in Section VIII.

II. RELATED WORK

Learning is a heavily studied field. Traditional methods of
completely specifying the environment have severe limitations.
Real world environments usually consist of unobservable and
dynamic characteristics. The incorporation of learning into
robotics allows robots to dynamically choose actions based
on their previous experiences.

Work in behavior based robotics, both single and multiple
robot systems, consists mainly of behaviors competing with
each other. The relationship representing which behavior to
choose given the current state, is learned via feedback from
the previous runs [1], [2]. Matarić [1] applied reinforcement
learning, similar to this paper, to a team of foraging robots. It
provided continuous reinforcement to various behaviors until
an optimal policy was achieved. Parker [2] demonstrated a
framework for creating cooperative behavior based systems
while introducing a learning element.

The relationship between the behaviors and the state can be
learned in isolation [3], [4]. Davesne and Barret [3] presented
a set of incrementally learning agents that achieved tasks via
behavior reinforcement. Fuentes and VanWie [4] used a simple
hill climbing technique to learn the relationship between the
states and behaviors. Due to the inter-dependencies within
these behaviors, these methods do not work well for larger,
tightly coupled tasks. Task decomposition into behaviors has
been applied by decomposing them into subtasks and learning
them separately. These subtasks are then divided across a set
of robots who combine their information to complete the task.
Malak and Khosla provided such a framework [5].

The complex task studied in this work is a variation of urban
search and rescue. An urban map consists of hostile agents and
the robots’ objective is to clear all hostile agents. Similar tasks
containing hostile agents have been studied, such as multi-
robot patrol with reinforcement learning [6]. The simpler task
used in this paper is a mapping task. Various aspects of map
learning have been studied. An example of coordinated map-
ping by multiple robots has been demonstrated by Rekleitis
et al. [7]. Map Learning has also been implemented using
artificial neural networks [8], [9].
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III. EXTENDING LEARNING

The existing methods face a few problems. First, indepen-
dently learning dependent behaviors may lead to unnecessary
training to relearn large portions of the dependent behaviors.
Also, the sub-tasks are usually divided according to the physi-
cal aspects or functionality, for example by sensors required by
the sub-tasks. This decomposition may lead to unnecessarily
dividing the task into more sub-tasks. The presented method
does not use a number of parallel subtasks during training but
instead chooses a maximal subtask.

Formally, let T denote the complex task. The optimal policy
for T , πT (s, a) provides a utility value for each state s (s ∈
ST , the set of states for task T ) and a corresponding possible
action a (a ∈ AT , the set of actions for task T ). If a robot
chooses the action with the highest utility value (using the
optimal policy) for the given state, it shall function optimally.
The learning objective is to obtain an optimal policy for T .

A simpler task (V ) consists of a set of states (SV ) and a set
of actions (AV ) that are subsets of ST and AT , respectively.
The optimal policy for V , πV (s, a) is extended to cover the
states ST−SV and the actions AT−AV . During this extension,
prior knowledge regarding V and T is employed to accelerate
convergence, but is not required. This paper demonstrates that
learning is achieved faster than learning T from πT (s, a) =
0, ∀s ∈ ST and a ∈ AT .

It should be noted that the defined policy does not apply
only to a specific learning algorithm, but can be easily trans-
lated to or from any algorithm. If it is viewed as a table
of inputs and respective output values, then this policy is a
simple functional mapping that is fed into a neural network
or decision tree. Conversely, the policy can be extracted from
the learning algorithm by providing all the different possible
inputs and storing the output values in the policy.

Determining the simple task that lies within a more complex
one is a non-intuitive process. There are a few properties that
the simpler task should hold:

• It should encompass as much of the final task as possible.
• Training should be inexpensive. For example, if the robot

can learn the task via simulations, this is preferred.
• The simple task should contain elements of the final task

that are inherently difficult to learn.

These properties reduce the problems with a hierarchical
task division. First, since only one subtask is considered, the
extra time needed to learn the dependence between various
subtasks in other methods is vastly reduced. Also, since the
choice of the simpler task is based only on the learning aspect,
it may not be interpretable as a subtask (since it contains a set
of states and actions for the final task) but shall be one that
optimizes the learning time and cost.

IV. SYSTEM DESCRIPTION

The multi-robot task is to clear stationary hostile agents
from an unmapped interior urban (UIU) scenario. Many task
details have been abstracted for purposes of demonstrating the
learning behavior.

(a)

(b)

Fig. 1. Creation of a graph (b) from the given map. (a) Dark circles represent
intersections, white circles represent rooms, and the gray circle represents a
feature.

Scenarios consisting of competitive agents in multiple robot
domains has recently gained prominence. These problems are
very different from traditional multi-robot scenarios and are
sufficiently complex to permit demonstration of the described
method.

Interior urban scenarios consist of buildings with corridors
and rooms. The maps are represented using a graph where
edges are straight lines (forming corridors) and nodes represent
either a room, an intersection, or a feature. A feature can
be a bend or a corner in the corridors, or another recurring
object, like a door. The edges are weighed by the time taken
to traverse them (both length and width). Rooms are weighed
by the time required to search them, dependent on factors such
as size, the number of obstacles in the room, etc.

Most urban interiors can be represented using such a
graph. Fig 1(a) shows an example of a typical urban building
consisting of rooms and corridors. Fig 1(b) shows the map
represented as a graph. This technique is also used to represent
other types of terrain [6] and is often termed a “visibility
graph”. It is a very effective representation for navigation
and path-planning problems. The robots have an empty graph
representation at the start of the task execution.

The robot team consists of faster but vulnerable scout robots
and slower but more powerful weapon robots, thus introducing
heterogeneity. An individual robot is a mobile robot with
localization and communication capabilities. The architecture
is fundamentally reactive, but the individual actions include
communication and storing the visited edges and nodes.

The stationary hostile agents are placed in the map with their
number and positions unknown to the robots. It is assumed that

3333



(a) (b)

Fig. 2. (a) The CovA factor. (b) The GovC factor.

these hostile agents are strictly placed at a feature, for example
behind a door. Each hostile agent can only be destroyed by a
minimum of m weapon robots. If fewer than m weapon robots
encounter a hostile agent, the team will be destroyed.

The control of the team is very decentralized. There is no
communication between the team’s robots. The team’s state is
shared by all team members. When the team approaches an
intersection, they split with some following one edge while
the others follow another.

The probability that a robot will follow a particular edge
j (pj) depends on the edge’s covered area (CovAj), the goal
covered (GolCj), and the coverage area probability (CA). The
covered area denotes the area accessible (in a strict geometric
sense) compared to the covered area of other edges. It is
expressed as a ratio of the total area (see Fig 2(a)). The
CovA factor splits the area into two regions according to the
angle bisector of the intersection. The goal covered denotes
the probability that the team’s goal lies on this edge. The dark
circle in Fig 2(b) represents the goal. The GovC factor shows
the distance of the goal from an edge is inversely proportional
to the contribution of that edge. Therefore, the GovC of each
edge is approximately opposite of the CovA value in Fig 2(a).
The coverage area probability represents the priority given to
the covered area over the goal covered. Given these three
parameters, the probability that a robot will choose path j is:

pj = CA × CovAj + (1 − CA)(GolCj)

This probability is such that
∑

j pj = 1 for each intersection,
since

∑
j CovAj = 1 and

∑
j GovCj = 1.

Each scout robot either moves at the slower speed of the
weapon robots, or moves at its own speed. This value is
represented by a boolean variable, KeepWeapon. The robots
can stop at anytime during task execution, which is represented
by another boolean variable, Move.

There are three danger levels. The default is the zero danger
level. When a team stops near a feature, the danger level of
nearby robots is set to one, denoting that the team suspects
there may be a enemy agent at that feature. If any team is
attacked, a danger level is set to two, indicating the hostile
agent’s position which becomes the other robots’ goal.

Each task state and action is represented as a bit vector.
The state corresponds to team conditions and position, as
in [1]. The actions are represented as bits that determine
the robot’s actions. The complete list of states (input to

TABLE I

INPUTS AND OUTPUTS FOR TASK T

Inputs Range

DL Danger Level 0, 1, 2

GL Goal 0/1 0 when DL = 0

nWPN Number of Weapons 0, 1, 2 0 - No weapons

1 - between 1 and m-1

weapons

2 - ≥ m weapons

FTR Feature 1,..,5 1 - when at no feature

Outputs

MV Move/Stop 0/1

WPN Accept/Deny Weapon 0/1

CA Coverage Area 0-1.0 At intervals of 0.1

Coefficient

TABLE II

INPUTS AND OUTPUTS FOR TASK V

Inputs Range

DL Danger Level 0

GL Goal 0 0 when DL = 0

nWPN Number of Weapons 0, 1, 2 0 - No weapons

1 - between 1 and m-1

weapons

2 - ≥ m weapons

FTR Feature 1,..,5 1 - when at no feature

Outputs

MV Move/Stop 0/1

WPN Accept/Deny Weapon 0/1

CA Coverage Area 0-1.0

Coefficient

the learning module) and actions (output from the learning
module) are shown in Table I. There are 90 input combinations
and 44 output conditions resulting in a total of 3960 possible
combinations.

V. TASK SIMPLIFICATION AND LEARNING

The UIU hostile agent scenario was selected based on task
complexity and the training cost. If the robots were directly
trained on this task, they would be frequently destroyed before
learning to avoid the destruction. The training time has to be
minimized.

The task is “simplified” by training on maps with all enemy
agents removed. All inputs and outputs dependent on the
hostile agents are removed. Removal of each single variable
reduces the total policy size. The abstracted set of inputs and
outputs is provided in Table II. The number of possible input
combinations is reduced to 15, though the number of output
combinations remains 44, thus reducing the total number of
possible combinations to 660. This task represents mapping
and is a safe problem in which no robots are lost.
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TABLE III

REINFORCEMENT SIGNALS FOR THE TASKS

Signal Type Description

Basic

- Inapplicable action Strongly Never choose an action

Negative not possible for a state

Simplified Task, V

- if MV = 0 Negative If robot does not move

- Time Taken Positive Global Reinforcement

Final Task, T

- if MV = 0 & WPN ≥ 2 Negative Never stop when enough

weapon robots

- if MV = 0 & WPN = 0 Positive Stopped near a correct

FTR = EnemyFTR feature, suspected enemy

- if MV = 0 & Negative Suspected enemy at

FTR �= EnemyFTR a different feature

Instead of choosing a complicated teaching method such as
neural networks or genetic algorithms, the chosen technique
is reinforcement learning. This method consists of explicitly
storing the policy in memory, i.e. there exist weight values for
each possible input and output combination. This technique
was effectively implemented in [1] and is very effective for
systems with a small set of inputs and outputs.

Reinforcement learning faces a significant problem of prop-
agating credit to different states and actions for even slightly
complex problems. This problem is handled in two ways. First,
instantaneous reinforcement signals are included for actions
that are definitely negative, such as not moving at any point
during mapping. Second, the robots are only allowed to select
one output combination per trial. Thus the outputs for every
iteration were determined independent of the inputs. The total
mapping time was used as the reinforcement signal.

This method ensures that all inputs (for each robot) have all
output combinations evaluated and reinforced. Even though it
eliminates the reinforcement signal problems, it cannot be used
for tightly coupled tasks (like the final task T ). Nonetheless, it
provides a fairly efficient policy for the simple mapping task.

The learning module extension for training on the final UIU
scenario required each input and output that was removed to
be returned. As the inputs are inserted, the weight values were
copied, assuming that the inputs are independent of one an-
other. For example, when DL = 1 and DL = 2 are inserted, their
combinations with the rest of the variables (inputs and outputs)
is equal to that of DL = 0. Prior knowledge can be used to
modify the weights when the outputs are added, exploiting the
previously known qualitative relationship between the inputs
and outputs. It is not necessary to do this, and we do not
assume such prior knowledge.

This extended learning module is suitable for training in
scenarios containing hostile agents. Since the module has
already learned a portion of the final policy, it should converge
to an optimal policy faster than other methods.

Table III provides the reinforcement signals. The positive

(a) (b)

(c)

(d)

Fig. 3. Demonstrates map learning on different graphs. (c) The Coverage
Coefficient graph with the weight values learned for map (a). (d) The weight
values learned corresponding to map (b) (Intersections black, features gray,
and rooms white. Start point - center bottom room).

signals were +0.2 and +0.1 for the mapping (V ) and final
task (T ) respectively, while the negative signals were -0.2
and -0.1. The strongly negative signals were -0.5. The task
completion time was normalized and inverted before applying
it as a signal.

Three different methods can be used to training. First, for a
given state, the action with the highest weight is chosen. This
represents an exploitation search, where the system primarily
relies on previously learned weights [1]. The second method
represents the exploration method where the actions are chosen
with a probability distribution proportional to the weight
values. The third method, pseudo-random sampling, chooses
the highest weight output with the probability q, and samples
the actions according to their weight with probability (1−q). If
q = 1.0, this method corresponds to the exploitation method,
and when q = 0.0 it corresponds to the exploration method.
This creates a balance between the two methods.

VI. EXPERIMENTAL RESULTS

All experiments were conducted in simulation on a Pentium
Celeron 2.8 Ghz machine, with 192 MB RAM. The simulation
time depended on the map size and the complexity, but no runs
required more than 5-6 seconds to traverse the entire map,
except for cases where the robots could not complete the task.
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For all experiments, m (minimum weapons needed to destroy
an agent) was set to 2.

Map learning required testing all possible output combina-
tions. Each of the 44 combinations required the module to be
trained on 5 runs, resulting in a total of 220 map traversals.
After learning, the model was applied to the map by choosing
the maximum weight action. The time to search the entire map
was very small.

Fig 3 demonstrates the weight changes for different Cover-
age Coefficient values. When trained on Fig 3(a), the Cov-
erage Coefficient weights followed a downward trend (Fig
3(c)) indicating a low Coverage Coefficient results in better
performance. Such a trend was not found for the map in Fig
3(b), where the weights were inconclusive, as shown in Fig
3(d). Thus, the coverage area is not a parameter independent
of area, and thus needs to be learned.

Model extension required adding new input states (the
outputs remained the same). The actions were randomly cho-
sen with a distribution proportional to their weights. Though
choosing exploitation might have been a safer option per
iteration, convergence would have required a large number
of iterations.

Exploration results in a more dangerous search, but has a
higher probability of reaching the optimal policy faster. This
search was applied to various maps with 21 intersections,
25 corridors and 6 rooms. The team consisted of 10 scout
robots (velocity 1.5) and 5 weapon robots (velocity 1.0).
The maximum time per trial was 600 steps. Fig 4 compares
the learning after simplification with a direct application of
learning on one of the maps. Initial weights of the direct
application were set equal to one another. All other parameters
were identicle. Indirect learning converges faster and to a value
of time lower than that achieved with direct learning (Fig 4(a)).
The spikes indicate cases where the robots were unable to
search the map in a reasonable time. Direct learning has many
more spikes than indirect learning and does not converge even
after 100 trials. The results were similar in the other maps.

Two other comparisons better confirm the indirect learning
performance. Fig 4(b) shows the number of robots left when
training was completed. The number of robots lost with
indirect learning is much smaller, and the robots quickly learn
to avoid destruction. The number of safe robots in direct
learning is equal to the initial number of robots (15) in only
11 of 100 trials. Indirect learning resulted in a policy that
encouraged team formation. The number of teams remaining
after indirect learning was lower than that with direct learning
for the same number of robots (Fig 4(c)).

A portion of the final policy learned after the complex task
(T ) training is provided in Fig 5. The y axis is the feature
faced by the robot, where 1 refers to none and 4 to an enemy
feature. High weights for moving when faced with no feature,
and not moving when faced with the enemy feature can be
observed. Also, weights are slightly higher for moving when
facing an enemy when the team has m weapon robots, since
it need not stop at an enemy feature. This plot demonstrates
how the decision Move depends on the input feature.

(a)

(b)

(c)

Fig. 4. Comparison of the direct and indirect learning. (a) Training time
required. (b) The number of robots left after training. (c) The number of
teams left after training.
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Fig. 5. 3D plot comparing feature weight values and the Move decision.

VII. DISCUSSION

The experimental section demonstrates that this method
performs better than direct learning. The time required for
learning to perform and for performing the task were much
lower. The number of robots lost (Fig 4(b)) was much lower
and the generated policy was optimal.

This result is not a surprise. If we examine the method, it
attempts to remove the redundant correlations at a lower level.
For example, consider a scenario where a pair of input/output
variables is independent of one another. In other words, for
different input values, the distribution of the output weight
values inherently remains the same. Suppose one of these input
values belongs to the “unsafe” domain and at least one to the
“safe” domain. Directly learning the policy requires learning
the same weight distribution for each input value, resulting in
redundancy. The presented method learns the weight values
in the “safe” domain and then copies the values to other
(“unsafe”) input values thus reducing the amount of learning.

If there is a strong correlation between the variables, either
method will spend time learning it. The proposed method uses
prior knowledge of any such correlation to change the weights
when extending the learning module to the final task. For
example, if we know that the “unsafe” value requires the direct
opposite of the “safe” value actions, the signs of the weight
values can be inverted instead of merely copying them.

Another benefit of the proposed method is the number of
reinforcement signals. Creating a set of reinforcement signals
for the simplified task is easier since there are fewer states
and actions. When extending the method to the final set of
states and actions, the included reinforcement needs only be
those that correct any wrong assumptions made during the
extension (inter-independence of variable values). On the other
hand, directly learning the task requires an in-depth study of
the complicated problem to determine all the reinforcement
signals that will effectively converge to the policy.

The final task of clearing a UIU scenario of hostile agents
was also fairly complicated and interesting. Since there was
minimal communication between the robots, individual robot
behaviors were all the learning module could affect. Even
this minimal control lead to a seemingly coordinated behav-
ior, hinting at a possible method to team multiple agents
without necessarily communicating more than necessary. This

is similar to a human team behavior that does not always
need a leader for every team and does not require continuous
communication of individual position to other team members.
The behavior is highly reactive, with the results of actions
being reinforced and used for continual learning.

VIII. CONCLUSION

Directly learning a complicated, unsafe task is a difficult
problem. Each iteration is very costly in terms of time and
objects, therefore as much learning as possible without unnec-
essarily using additional trials is required. This paper presented
a method to simplify the task and make it safe.

Training in this safe domain is cheap, and thus, many input
and output value correlations can be learned. Extending the
learned distributions to the remaining states and actions can be
achieved either by merely copying the weights or by modifying
the weights based on some prior knowledge.

The training continues to the extended module with a new
set of reinforcement signals that converge on the optimal
policy using fewer unsafe iterations. Assigning credit using
reinforcement signals is much simpler with this method.

This learning method was applied to a multi-robot problem
in which a team of scout and weapon robots clear an interior
urban terrain of hostile agents. The simplified problem was that
of mapping an area that does not contain any hostile agents.
The method performance was significantly better than direct
learning of the complicated task.

Work is needed to demonstrate the method on other sce-
narios. A number of different tasks have to be investigated to
identify the difficulty of creating the simpler, safer task, which
cannot be intuitively realized for complex, tightly-coupled
problems. Learning techniques other than reinforcement learn-
ing also need to be evaluated since a tabular format of storing
the policy becomes impractical for complex problems.
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