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Abstract—The expansion of complex autonomous sensing and
control mechanisms in the Internet-of-Things systems clashes
with constraints on computation and wireless communication
resources. In this paper, we propose a framework to address this
conflict for applications in which resolution using a centralized
architecture with a general-purpose compression of observations
is not appropriate. Three approaches for distributing observation
detection workload between sensing and processing devices are
considered for sensor systems within wireless islands. Each of the
approaches is formulated for the shared configuration of a sensor-
edge system, in which the network structure, observation moni-
toring problem, and machine learning-based detector implement-
ing it are not modified. For every approach, a high-level strategy
for realization of the detector for different assumptions on the
relation between its complexity and the system’s constraints
is considered. In each case, the potential for the constraints’
satisfaction is shown to exist and be exploitable via division,
approximation, and delegation of the detector’s workload to the
sensing devices off the edge processor. We present examples of
applications that benefit from the proposed approaches.

I. INTRODUCTION

With the growing interest in the Internet of Things (IoT)

vision [1], many real-world systems are pushed to gain increas-

ing capacities for self-awareness, autonomy, and adaptation in

their operation. Promising applications relying on this premise

include next-generation systems for smart cities [2] and intelli-

gent vehicular networks [3], [4]. Realization of the associated

monitoring and control tasks in such systems, however, is

complicated by their distributed, multicomponent nature and

sophisticated information processing. As participating entities

of an IoT system form a network of interconnected computing

devices, the architecture of its information processing has to

be designed accordingly, taking into account the fundamental

structural properties specific to IoT applications:

• The capacities for data acquisition (sensing) and data

processing (computing) are distributed unevenly and vary

across the system, with devices of different purpose

having different limitations. For instance, mobile devices

are usually better suited for sensing and are less capable

of processing due to constraints on power expenditure,

while less power-restricted stationary devices commonly

afford more processing than sensing.
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• The system’s data sources (sensors), processing units

(processors), and centers of decision making (controllers)

which rely on the information from acquired data for

coordination, typically cannot all coexist on the same

devices. For sensors have to be deployed wherever the

required features of the environment are to be observed,

often on the system’s periphery, while processors and

especially controllers have to be located higher in the con-

nectivity hierarchy where they can have a bigger scope

conjoining several information streams. This necessarily

diverges the system’s sensing and control functionality to-

ward devices that are distanced from each other, perhaps

with some intermediary processing units in between.

• All of the devices communicate over channels of different

latency and medium. Sensors typically have a shared

low-bandwidth, low-latency connection to the rest of the

network that is carried by a common wireless resource

and mediated by a local access point at the wireless

edge. Processors and controllers are located at or beyond

the edge and are connected in a mostly hierarchical

fashion with high-bandwidth wireless or wireline links of

significantly higher latency than the one-hop links within

sensor wireless islands.

The cornerstone trait of an advanced IoT system is the

ability to gain timely understanding of its environment, which

strongly depends on the efficiency of data processing as it

progresses from the acquisition at sensors to the final decision

at the central controller. Critically, in many practically inter-

esting IoT systems, the nature of the monitoring or control

task set before a system demands a high volume of sensor

observations and a high degree of sophistication in their pro-

cessing. Oftentimes, it involves a machine learning algorithm

solving a pattern recognition problem (most commonly, in the

form of an environment state classifier or object detector).

If the induced processing were to happen within a single

computing node having on-the-spot access to all the sensor

data, such algorithm could be straightforwardly implemented

on a sufficiently powerful controller.

Yet, in practice, single-node processing is almost always

ruled out by a combination of restrictions on both computation

and communication that follow from the three general proper-

ties listed above. Because of those restrictions, which usually
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are actualized as time-varying and device-specific constraints

on available transmission bandwidth and computational en-

ergy, the processing workload has to be reorganized so that it

could be adaptively divided among the nodes in the network.

In an ideal case, it would be desirable to achieve the following

guiding objectives:

• Minimize the amount of traffic to avoid congesting shared

wireless resources and violating requirements on process-

ing latency.

• Minimize the induced processing load on the sensors and

intermediate processing nodes to avoid depletion of their

computational resources.

• Minimize the loss of information in the intermediate

stages of processing aimed at traffic reduction, to avoid

deterioration of the system’s decision making quality.

However, it is easy to see that these objectives are in conflict

with each other, as, in general, it is impossible to simulta-

neously keep all three of the involved qualities low. Indeed,

achieving traffic reduction requires adding computational work

to sensors and processors, which would not be necessary

for a centralized processing leaning on a single controller.

Similarly, reduction in both additional computation work and

potential information loss causes an increase in the amount

of necessary communication. Therefore, efficient allocation

of the processing workload in a sufficiently constrained IoT

system requires searching for an optimal tradeoff between

these objectives.

In this paper, we discuss three different strategies for

approaching the problem of finding that balance under differ-

ent assumptions about the processing to be implemented. In

Section II, we first describe those approaches from the general

principles and then illustrate them in Section III with three

specific problem settings inspired by concrete applications.

II. SENSOR-EDGE WORKLOAD MANAGEMENT:

CHALLENGE

In the presence of constraints, the aforementioned diffi-

culties in data processing pose a challenge even in simply

organized IoT systems. For the sake of presentation, let us

concentrate on one common architecture of (a part of) an IoT

system, where the key roles in shaping the information flow

are played by two logical entities: an array of sensors and an

edge processor. In it, the sensors, connected into one or more

wireless islands, are in charge of data acquisition, and the edge

processor, communicating with the sensors via a local access

point(s), is in charge of an integral processing of the sensor-

acquired data. We assume that the sensors continuously obtain

new observations at a discretized time scale with some fixed

frequency and are able to transmit them to the edge within the

same timeframe.

The sensors-edge system as a whole is assigned with

an ongoing computational task, whose output is collected

from the edge processor either as a final result or as an

input for a higher-level decision making process. Often, this

computation task consists in detecting occurrences of some

events or conditions of interest in the sensor observations,

e.g., identification of suspicious activities in a public space

or dangerous states of a patient in the post-operative period.

Let us consider the simplest yet significant scenario where the

detection task (detector) is binary, that is, an observed state

is either of interest to the system, and the sensors’ data are,

then, to be compiled and reported by the edge to a higher-level

control, or not, and those observations are to be ignored.
It is this property of impermanent usefulness of sensor-

acquired observational data that can be used for overcoming

the IoT-related resource limitations. For the considered archi-

tecture, those can be aggregated into two critical groups:

• Bandwidth constraints for the sensor-edge communica-

tion, induced by the wireless channel shared between

the sensors as well as other concurrent clients within the

wireless island.

• Computational constraints for the on-sensor data process-

ing induced by hardware limitations or power deficiency

due to the mobile-oriented nature of the sensors’ de-

sign. (Since our main focus here lies in the data flow

originating from the sensors, the edge is assumed to be

sufficiently powerful computationally to be effectively

unrestricted, compared to the sensors.)

If all observations are of interest to the system and thus

have to be communicated to the edge, no improvement can be

made to the structure of data processing to prevent exceeding

the bandwidth constraints. For this reason, in the applications

with those constraints being (at least sporadically) stringent,

fully centralized on-edge processing may become simply

unrealizable. However, since only some of the information

from the sensors’ observations are ultimately of interest to

the edge, bandwidth constraints can often be satisfied even

in those conditions by making the sensors conscious of their

input data and empowering them with an ability to transmit

the captured information selectively. This, of course, comes

at the price of an additional on-sensor data processing, the

amount of which is inevitably capped by the computational

constraints (sometimes quite severely). For this reason, full

sensor self-sufficiency — the complementing extreme to the

fully centralized processing— often cannot be realized, either.
For some fortuitous combinations of the detection task and

bandwidth constraints, savings resulting from using a general-

purpose compression scheme on the sensors’ observations may

be sufficient to make fully centralized processing feasible.

Even then, the effectiveness of such compression, oblivious

to the nature of the following processing, is rather limited,

though. Bandwidth savings from lossless compression of raw

observations are often insufficient, and lossy compression in

many cases cannot be made to extend the gain by much either,

as increasing its aggressiveness leads to information loss and

feature degradation in the data fed to the on-edge detection

pipeline, negatively affecting the quality of its outcome.
Thus, even in this simple architecture, we are faced with

the problem of finding a nontrivial arrangement of processing

between the sensors and the edge, in order to achieve a sat-

isfactory balance between the two extreme strategies without

violating the constraints. The bandwidth constraints effectively
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bound the capacity of the channel available to a sensor for

transmitting its observations to the edge. The computational

constraints, on the other hand, bound the sensor’s capacity to

sift out the omissible portion of the data that is unnecessary

for or is rejected by the detector at the edge processor. As a

result, the absence of local processing at a sensor is fraught

with data loss due to congestion and depletion of the wireless

resource, while the full-fledged processing is fraught with

exceedingly high (or even impossible) computational expense.

This realization naturally leads us to the necessity of hybrid

processing approaches that divide the detection workload into

the complementing on-sensor and on-edge portions.

In this paper, we intentionally disregard a possible compli-

cation of direct peer-to-peer communications between sensors

bypassing the edge. Additionally, for the purposes of exposi-

tion, herein we consider each sensor independently from others

as a part of a single sensor-edge pair tasked with a binary

detection problem (as presented above). In the application

space, it corresponds either to the case when each sensor’s

observations are processed in the frame of an independent

detection problem, or to the case when the detector for each

sensor-edge pair is to filter out only the observations that are

useful for the final joint detection problem at the edge.

Let us now discuss three high-level approaches to extracting

the said on-sensor processing and its supporting on-edge

counterpart. All of them are unified by the common idea

of resolving the conflict between the desired performance of

the system’s detector and the communication constraints by

distributing the induced processing workload between both

ends of the sensor-edge system. Conceptually, the three ap-

proaches are based on the concepts of delegation, division,

and extension of the workload. The main question in relation

to which the approaches can be principally differentiated is:

Given a pair of a wirelessly connected sensor and an
edge processor, together given the task of detecting a
certain kind of observations, how can the associated
detection workload be managed between them, under
the constraints on the communication channel capacity
and the on-sensor computational expense?

(∗)

The presented approaches do not cover the space of viable

strategies exhaustively, but rather represent those that we find

promising for further development, listed here in the order

of increasing organizational complexity. In Section III, each

of them is further discussed in application to a more specific

problem setting.

A. Alternating Detection Workload Offloading

The space of alternatives for satisfying the bandwidth

constraints is heavily influenced by the class of the sensor’s

computation capacity. Clearly, the biggest savings are achieved

when the workload of the detection problem is fully moved

from the edge processor to the sensor. Applications in which

the sensor is capable to support that, though, rarely occur

in practice. However, in some cases the detector used by

the edge for the sensor’s data is not that computationally

demanding, so the sensor is able to run it intermittently

Edge ProcessorSensor

Figure 1. Workflow of the sensor-edge system implementing the alternating
detection workload offloading strategy. Here xt denotes a single observation
at any given time slot t, and f stands for the detector algorithm shared by
the sensor and the edge. Green checkmark represents arrival at the decision
to accept an observation as a detection, while red cross signifies the rejection.

for some of the observations. In other words, the detection

algorithm in question is computationally viable for the sensor’s

hardware, but for reasons of maintaining a low thermal profile

or reducing power consumption, it is necessary to keep the

average number of its invocations small.

This circumstance immediately suggests the following high-

level strategy in response to the main question (∗).

• Lower the sensor’s bandwidth consumption by selectively

applying the detector to a subset of the observations

locally and suppressing transmission of those that are

rejected by it. Transmit the rest of them as usual.

• Keep the computational impact on the sensor contained

by limiting the running average of the number of obser-

vations the detector is locally applied to.

This way, the sensor still communicates with the edge on the

same granularity level of separate observations, just with some

of them being omitted from the transmitted data stream. In

order to avoid work duplication, the sensor accompanies each

communicated observation with a flag indicating whether the

detector has been run against it pre-transmission. Obviously,

the decision to bypass the detector must be made locally at

the sensor, but may be supported by the information supplied

with the edge’s assistance.

At the edge, the processing schedule remains almost the

same: whenever the edge processor receives a new observation

from the sensor, it either first applies the detector to it as

before, if the processing has not been done already on the

sensor, or immediately passes it on as a newfound detection,

otherwise. Since it is the very same detector that is used by

the sensor, all of the omitted observations would have been

rejected by the edge anyway, had they been sent to it, and

thus do not create any misses (i.e., false negatives) for the

sensor-edge system overall. Obviously, it does not introduce

new erroneous hits (i.e., false positives) either, as the detector

is still being run at the edge for all unprocessed observations.

Figure 1 schematically shows the resulting workflow of

the sensor-edge system. It effectively realizes a dynamic

offloading scheme in which the burden of the detection work

for each observation is dynamically shifted from the edge to

the sensor and vice versa. Such flexibility adds to the system

a new degree of freedom for adapting to the time-varying

capacity of its wireless resource. At the same time, it creates

the necessity to manage the ongoing computational impact of

the on-sensor offloading of the data processing. Whether the
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former factor can outweigh the latter depends on the specific

amounts of bandwidth savings and computational expenses in

each application. Nevertheless, for permitting configurations,

it becomes possible for the system to operate under a more

efficient regimes that are unattainable otherwise within the

centralized processing architecture.

B. Consistent Detection Workload Division

Unfortunately, the key assumption of the approach from

Section II-A makes it inapplicable to many systems. Indeed, if

the computational cost of running the edge-hosted detector on

the sensor exceeds the threshold of practicality even for a sin-

gle observation, it becomes impossible to divide the detection

workload between the sensor and the edge processor on the

observation-by-observation basis anymore (without switching

to a less-capable detector algorithm).

In such cases, an opportunity for splitting the work may

still be available in the internal organization of the detector,

though. Consider a detector that processes an observation in

a pipeline-like manner and, therefore, can be broken down

into two or more stages. Then, instead of offloading to the

sensor the chunks of work corresponding to the full pro-

cessing of selected observations, we can offload the chunks

corresponding to different degrees of preprocessing of every
observation. Additionally, if the amount of information at the

input of subsequent stages tends to decrease, the structure of

such detector can be exploited to address the main question (∗)

of the computation-communication balance as follows.

• Cut the bandwidth used by the sensor down by pre-

processing each observation with the first few stages of

the detector’s pipeline and transmitting the intermediary

result at the output of those stages instead of the full

description of the original observation.

• Control the associated computational cost at the sensor

by (dynamically) limiting the number of stages included

into the on-sensor portion of the detector used for pre-

processing.

As it can be clearly seen on the schematic diagram of this

strategy in Figure 2, the sensor and the edge become very

similar in terms processing of their respective inputs, as both

of them implement structurally similar pipelines, which differ

only in the interpretation of their output. As before, the quality

of the processing remains unchanged; it is only the distribution

of processing workload that is affected.

Under this strategy, unlike the one from Section II-A,

the sensor always transmits some information about every

observation, so the necessary reduction in bandwidth usage

is achieved by taking advantage of the detector’s structure

instead. Even when the processing of the detection pipeline

is only generally reductive, if there is at least one breaking
point in it such that the output of all the stages up to that point

can be encoded more efficiently than the corresponding input

observation, this first part of the detector effectively realizes

a semantic compressor specific to the nature of the particular

detection logic.

Edge ProcessorSensor

Figure 2. Workflow of the sensor-edge system implementing the consistent
detection workload division strategy. Here xt and x′

t = f1(xt) denote an
input observation and its partially processed reduced version, respectively;
f1 and f2 stand for the on-sensor and on-edge portions of the detector
algorithm f(xt) = f2(f1(xt)) implemented by the system. Green checkmark
represents arrival at the decision to accept an observation as a detection, while
red cross signifies the rejection.

Although in theory the presence of a breaking point in the

detector alone guarantees the potential for bandwidth gains,

its position in the processing pipeline is also quite important

in practice. If all breaking points are condensed into the very

last stages of the pipeline, it may be infeasible to reap the

fruits of those gains due to the computational constraints,

as the aggregate workload of the stages preceding even the

earliest of those breaking points (which is to be offloaded

to the sensor) might not be sufficiently less costly than the

complete workload of the unbroken detector.

Thus, for the combinations of detectors and constraints that

permit extraction of such compressing sub-detector, the sensor-

edge system gains another tool for managing the computation-

communication balance. Moreover, in the cases where the

detector allows for multiple practical breaking points, this

new degree of freedom is non-binary, so that the amount of

offloaded on-sensor workload may be controlled by the edge

with higher granularity than it is possible in the approach from

Section II-A.

C. Approximate Detection Workload Extension

There are detection problems in which the prior two ap-

proaches are impracticable still. That is, the detector algorithm

that has to be used by the system is too heavy for the sensor

and, at the same time, is structured in a way that either

prevents seamless splitting of the workload (voiding the option

to offload a part of it) or fails to grant any gains in the sensor’s

channel use (taking away the whole point of such offloading),

or both. Hence, the detector, as is, no longer can provide a

way to balance the computation-communication tradeoff. Of

course, it can be replaced with a less capable detector suitable

to the above approaches, but at the undesirable price of an

inevitable downgrade in the system’s performance.

However, in such instance, an additional resource for band-

width savings may be found in the distribution of the sensor’s

inputs. Many applications involve observations that carry sig-

nificant temporal correlations, so that successive readings have

the tendency to be in each other’s vicinity in the observation

space. Furthermore, it is not uncommon for the locality encom-

passing a chain of subsequent non-stationary observations to

be small enough, so that the separating surface of the detector

is significantly less complex in it. When it is so, in that locality,

the detector can be temporarily approximated with a simpler

version of itself that may be viable for on-sensor execution. If
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Edge ProcessorSensor

Figure 3. Workflow of the sensor-edge system implementing the approximate
detection workload extension strategy. Here xt denotes a single observation,
and f and gt stand for the full-fledged on-edge detector and its complementing
simplified on-sensor detector, respectively. Green checkmark represents arrival
at the decision to accept an observation as a detection (tentatively, when using
gt), while red cross signifies the rejection.

this condition of locality preservation does indeed hold more

often than not along the observed trajectory in the space of

the sensor’s readings, the main question (∗) may be brought

to resolution as follows.

• Reduce the sensor’s bandwidth consumption by applying

a simplified detector to each incoming observation at the

sensor, and leaving out of transmission those that are

rejected by this complementing on-sensor detector.

• Bound the computational load of the on-sensor detector

by restricting its choice to a simpler family of classifiers

that satisfy the device’s constraints.

In order to prevent any noticeable loss in the system’s

detection performance, the simpler on-sensor detector should

be trained to minimize its false negative rate (with an optional

constraint on its false positive rate). This way, the sensor

is effectively supplied by the edge with a detector of some

(hopefully, as many as possible) uninteresting observations that

could be identified with a less complex algorithm fitting the

sensor’s processing constraints.

From the standpoint of the sensor, there is little difference

in the processing protocol of this approach versus the first one

we have described in Section II-A. Since it is only the edge

processor that is capable of running the full-fledged detector,

the accompanying detector for the on-sensor use has to be

maintained by the edge based on the observation statistics

arriving from the sensor and periodically communicated back

to it (see the workflow diagram in Figure 3). The sensor, then,

may be even unaware that the detector supplied by the edge

is not original, as it does not affect its operation in any way.

As in Section II-A, the processing of each observation

passing the on-sensor filter and being communicated to the

edge, is completed there by applying the full-fledged detector

to make the final distinction between a false positive of

the simplified on-sensor detector and a true detection to be

reported as such to the outside. In a similar fashion, if the

computational price of the on-sensor detector is too high to

be paid for every observation, it may be used only for a portion

of them, without requiring a change in the on-edge processing.

This approach, certainly, adds a significant complication

by requiring timely estimation of the current locality en-

compassing the sensor’s observations, without having all of

them available at edge (as it would violate the communication

constraints). Generally, two strategies can be employed here

depending on the application. One strategy is to charge the

sensor with the task of supplying the edge with a compact

description of the probability distribution fitted to its recent

observations. Having this distribution, the edge is able to

solve the stochastic optimization problem for the parameters

of the sought on-sensor detector by minimizing a dissimilarity

measure of its output with the output of the master on-

edge detector over a sample distributed according the reported

distribution.

The other strategy is to keep the sensor’s logic unchanged,

so that the only information reported from it remains to be the

raw observations that pass its current local detector. The same

optimization problem is then continuously solved by the edge,

but on the sample of precisely those received observations.

This policy is usually preferable to the previous one as it

allows to relieve the sensor of any additional work beyond

the pre-transmission filtering. However, it requires more in-

telligence from the edge in updating the on-sensor detector

to compensate for the fact that the sample of observations

available to the edge may be skewed if the on-sensor detector

has not caught up with a recent locality change. In some cases,

this might, in turn, prevent it from catching up even further,

as the necessary observations may keep being rejected by the

ever more obsolete on-sensor detector in the name of sparing

the bandwidth usage. For this reason, the edge has to err on

the side of making the on-sensor detector (periodically) more

permissive to allow more false positives, in order to reduce

the asymmetry of the reported sample and to maintain a high

confidence in its relevance.

III. SENSOR-EDGE WORKLOAD MANAGEMENT:

PROBLEMS

A. Edge-Assisted Bandwidth-Aware Observation Filtering
Problem

As an illustration for the approach introduced in Sec-

tion II-A, let us consider an instance of a system using an on-

sensor edge-assisted filtering of object detections as a way to

cope with the limited wireless bandwidth in a video monitoring

application. The sensor-edge system in question is designed to

observe a real-time video stream capturing a view of a city

street for detecting and extracting the images of all pedestrians

that happen to be caught on camera. This is an example

of a typical safety-related monitoring task that may arise in

a smart city system. To collect the pedestrian images, the

edge processor is equipped with a pre-trained high-speed Haar

feature-based cascade classifier.

The role of the sensor is played by a smart camera, which,

at a fixed frequency, captures the frames of the input video

stream. Due to the low computational profile of the detector,

it is viable for the camera to run this detector locally on

a separate video frame. However, in order to minimize the

energy consumption, it is desirable to use it there only as often

as it is necessary to satisfy the bandwidth constraints of the

shared wireless channel. It is easy to see that the circumstances

of this application are well-suited for the requirements of the

full observation-based on-sensor detector offloading. Adhering
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to the strategy from Section II-A, we can construct the

following frame-processing system.

First, the smart camera sensor captures a video frame, and

then makes a decision on whether to scan it with the Haar

feature-based pedestrian detector, depending on the bandwidth

pressure put on the sensor by the edge in the current time

period t. If the detector is applied to the frame, the pixels that

are outside of the detected pedestrian regions can be safely

dropped from transmission to spare bandwidth usage, as only

those regions are to be collected for further processing at the

edge processor. Otherwise, the whole frame image is sent as

is. In either case, the usual image compression is applied.

At the edge, then, the arriving frames that have not been

filtered with the detector at the sensor are scanned with it. The

pedestrian images found in the frame, regardless of whether

they were extracted at the sensor or at the edge, are reported

at the system’s output. As a feedback, the edge reports back

to the sensor two characteristics to assist the sensor’s decision

on running the detector: (a) the amount of bandwidth bt+1

guaranteed to be available for the sensor in the next time

slot t + 1, and (b) an estimated interval Dt+1 of the object
density in the next frame, based on the few recent ones. For

the purposes of this system, the object density of a frame is

defined as the portion of the frame area that is taken by the

pedestrian detection regions. In general, one or more other

application-specific features may be used in addition to or

instead of the object density, making Dt+1 a multidimensional

feature region.

In this setting, we set the on-sensor adaptation problem in

the following form: Find an optimal decision policy minimiz-

ing the number of frames which are to be processed locally,

while keeping the probability of frame-by-frame bandwidth

violations below some threshold 1 − α. More precisely, the

objective of the on-sensor detector activation control is to find

optimal parameters

θ∗ = argmin
θ

E[�(bt − ϕt(δt, θ)) | δt ∈ Dt], (1)

for an estimation ϕt(δt, θ) of the transmission size of an

unprocessed, unfiltered video frame xt whose object density

is δt(xt), where bt(xt) is the true transmission size of xt, and

�(u) is the loss function determining the cost of overestimating

(for u < 0) or underestimating (for u > 0) the transmission

size of a frame. The expectation is taken over the video

frames xt whose object densities belong to the edge suggested

density interval Dt.

Although different optimal policies can be found depending

on the preferred definition of the loss function, for one

particular choice of it, the optimization problem (1) can be

solved analytically. Namely, for the loss function of the form

�(u) = u · (α− 1[u < 0]), (2)

the problem (1) can be rewritten in its empirical version as:

θ∗ = argmin
θ

[
α
∑

δt∈Dt
bt>ϕt

|bt − ϕt|+ (1− α)
∑

δt∈Dt
bt<ϕt

|bt − ϕt|
]
, (3)

where the factors α and 1−α weigh the costs of overestimating

the frame size (i.e., wasting the energy on processing when it

could have been spared) and underestimating it (i.e., risking

a frame loss due to attempting to transmit unprocessed frame

that is too big). In other words, α takes the meaning of the

expected number of frames whose transmission should not fail

due to the sensor sending them unprocessed when the available

bandwidth is insufficient for that.

It can be easily seen that the optimal estimator for the loss

function (2) is

ϕt(δt, θ
∗) = θ∗Dt

, (4)

for θ∗Dt
being the αth conditional quantile for the frames xt

whose object densities δt(xt) belong to Dt. This quality of the

resulting policy is quite desirable for a real-time application,

as it allows to avoid any optimizing work during the system’s

operation.

In more detail, this problem has been described in our paper

in the Proceedings of the 2017 IEEE Conference on Sensing,

Communication, and Networking (SECON) [5].

B. Deep Neural Network Splitting and Observation Compres-
sion Problem

A natural fit for the workload division approach proposed in

Section II-B may be found in applications where the detector

is implemented with a Deep Neural Network (DNN) classifier.

By construction, a multilayer neural network can be seen as

a pipeline of sorts, different stages of which correspond to

portions of the processing done by separate layers of the

network, with clear information flow between them in the form

of input and output links connecting neighboring layers.

For the approach to be useful, the pipeline to be split into

the on-sensor and on-edge sub-pipelines has to have the key

property: the tendency for the reduction of the amount of

information passed from each subsequent stage to the next. In

practice, this presents a challenge for implementation of this

strategy within many DNN architectures. On the one hand,

such network built for a binary classification problem must

exhibit a semantically reducing data flow, so that, at least in

one of the last few layers of the network, the size of the input

does not exceed the size of the whole observation itself. On

the other hand, depending on the specific composition of layer

types, the amount of data passed between successive layers

may not change monotonically, leaving us with a limited set

of breaking points for splitting the detector’s workload.

As we mentioned in Section II-B, we are most interested

in breaking points that realize a good tradeoff between the

computational cost of the layers preceding it in the network

and the size of the output of their last layer, which is passed to

the the first layer beyond that point. For the networks that have

well-balanced breaking points, the approach can be applied

directly to choose the earliest splitting place satisfying the

bandwidth constraints. Although not every DNN detector is

guaranteed to have that property, there exist neural network

classifiers having intermediate layers early enough in their

processing pipeline whose output is smaller than the network’s
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Figure 4. Sizes of the uncompressed output of the layers in the AlexNet
convolutional neural network trained for the ImageNet visual recognition
dataset. The dashed line is set at the size of the network’s input. Potential
breaking points for the layers whose output takes less space than that are
circled.

input. For instance, Figure 4 shows that the amount of data

required to transmit the uncompressed output of layers 3

and 6–13 in the AlexNet convolutional neural network is

smaller than the amount of data necessary to transmit an input

observation. However, for a network that does not have a

practical set of breaking points, it is not necessarily impossible

to break its workload into suitable subnetworks. In those cases,

one of the two following complications may be employable.

Due to a high degree of cross-layer connectivity, the net-

work may not have a break point satisfying the bandwidth

constraints in terms of the layer’s output size early enough

in the processing pipeline (i.e., in the first few layers) for

the computational constraints to hold. Yet, it may be possible

that, although the number of bits required to communicate the

output of the candidate layers for splitting is not significantly

lower than the size of the raw input observation, the entropy

of those output vectors for is lower than the entropy of those

observations themselves.

Normally, in the straightforward approach, an observation is

passed through the first few offloaded layers at the sensor, and

then the resulting output is transmitted to the edge, where it is

supplied as an input to the first of the rest of the layers giving

the final classification decision. In this case, the network can

be broken down into two — the on-sensor and on-edge one —

right after one of those layers having a lower output entropy,

with an additional compressor and decompressor added at the

place of the split. Therefore, in addition to the usual operation,

the sensor is to compress the output of its part of the neural

network before transmission, and the edge is to decompress

the received data before passing it to its part of the neural

network for completion of the observation processing.

In situations where there are no breaking points available

in a DNN classifier that do not violate either the bandwidth

or computational constraints, we may consider modifying the

given network in order to introduce one or more breaking

points in it. One way to achieve that is to use the same

examples that have been used for supervision during the

training of the original DNN detector in order to train a new

DNN of the same structure and having the same parameters,

but with an additional regularization term added to the ob-

jective of the gradient descent that would penalize nonzero

weights at the output of a certain fixed layer. If such retraining

is possible (establishing it constitutes an important research

question for each particular application) so that the accuracy

of the new network is not dramatically lower than that of the

reference one, the new network can be used instead, assuming

that enough weights have been zeroed out to guarantee a

bandwidth-saving breaking point.

Analogous modifications to existing DNN architectures that

enable some mechanisms for adaptive workload truncation at

the end-devices have been a subject of recent developments

in the literature. The proposed techniques explore different

ways of restructuring DNN-based observation processing in a

cascade-like [6], [7] or other modular [8] or hierarchical [9]

manner allowing for early exit with a partial outcome, under

the pressure of computational constraints.

Other related techniques approximate the outcome of a

DNN with a dynamically selected model out of a catalog of

less accurate but less computationally expensive ones [10], or

replace a DNN with its sparser approximation fitting reduced

computational requirements [11]–[13].

C. Dynamic Locality-Aware Observation Filtering Problem

Following the high-level approach introduced in Sec-

tion II-C, let us now describe the architecture of the sensor-

edge system implementing it in more precise terms.

Let f : X → R be the master detector, partitioning the space

of possible observations X with the decision rule f(x) ≷ 0.

This binary classifier f is the full-fledged detector implement-

ing the system’s desired recognition behavior, that is assumed

to be fully trained and available at the edge processor. For

each time period t, the edge has to find a localized on-sensor

detector gt : X → R from some fixed family of classifiers G
that adapts the on-edge classifier f to the current condition of

the system and is determined by the following three aspects.

• Observation locality Dt. The sought detector gt is to

achieve desired levels of false-positive and false-negative

rates for the inputs distributed similarly to the recent ones

observed by the sensor up to the period t−1, as described

by some distribution Dt.

• Bandwidth constraint bt. The sensor’s wireless commu-

nication channel constraints are given in the form of the

expected channel capacity bt that is available to the sensor

in the period t. It is assumed to be available at the edge

as a parameter of the system or be acquirable by it from

a wireless channel access model.

• Energy constraint et. The sensor’s computational con-

straints are expressed in terms of the maximal energy

expense et that the sensor can use for local data pro-

cessing in the period t. It is assumed to be immediately

accessible at the sensor and be reported to the edge.
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(The computational resources of the edge processor are

assumed to be unconstrained.)

In other words, the problem of finding an optimal on-sensor

detector gt requires finding a function in G that is close to f
for points distributed according to Dt, but does not violate on

average the bandwidth and energy limits of bt and et set by

the edge. More formally:

g∗t = argmin
gt∈G

Ex∼Dt
[L(f(x), gt(x))], (5)

s.t. Ex∼Dt [RE(Egt(x), et)] ≤ εt,

Ex∼Dt [RB(Bgt(x), bt)] ≤ βt.

Here the objective function has the meaning of the expected

loss L(f(x), gt(x)) between the predictions of the candidate

and reference detectors gt and f , respectively, averaged over

(a sample from) the distribution Dt. The loss function L
can be set to any suitable measure of dissimilarity between

the two separating surfaces, e.g., the squared difference loss,

the logistic loss, the binary error loss, etc. In the latter

case, to prevent missing detections, the function L may be

asymmetrical, assigning different costs to the instances of false

positive and false negative errors of gt.

The intuition behind the addition of the expected value

operator over Dt comes from the simple fact that, a less

capable, more energy-efficient algorithm, gt cannot, in general,

be a uniformly good fit for f (otherwise f could be replaced

with some g ∈ G globally). Hence, in each period t, it has to

be optimized separately to take advantage of the temporarily

reduced data variation in the corresponding fragment of the

observation sequence.

Both computation and communication constraints are han-

dled in a similar fashion. The functions Egt : X → R≥0

and Bgt : X → R≥0 define the amount of (or an estimation

of) energy to be consumed by the sensor for evaluating gt
for an observation x ∈ X and the amount of bandwidth

that is required for its transmission to the edge, given that

gt(x) > 0. Functions RE(·, et) and RB(·, bt) play the roles

of nonnegative penalties capturing the cost of exceeding the

energy and bandwidth limits et and bt. By convention, both

penalties should be zero for an observation if the constraints

are satisfied for it. Finally, the thresholds εt and βt denote

tolerances on the expected values of the said penalties over

the given distribution of Dt.

The observation locality distribution Dt is introduced into

this problem statement explicitly, because it plays an important

role in communication between the sensor and the edge. As

we have mentioned in Section II-C, the information about

Dt may be communicated in two different ways in a real

system. One way implicates that, in a parameterized form,

the distribution Dt becomes the sensor’s request message

for receiving an updated local detector gt. In that case, the

sensor and the edge must agree on a compactly describable

distribution beforehand, so that sharing its description with

the edge requires sending less information than would be

necessary for the underlying sample of observations.

In the other way, Dt plays only a formal role in the

problem (5), as the corresponding expected values are simply

computed as averages over the observations reaching the

edge processor. This choice necessitates a more complex

loss function L that would dynamically adjust for an ex-

tra slack in gt to add a margin of false positives to the

separating surface gt(x) = 0. Otherwise, if subsequent ob-

servations xt+1, xt+2, . . . are shifting toward the subspace

gt(x) < 0, the points from which are not communicated to the

edge, the sensor risks being stuck with a stale detector gt that

would cause many detection misses, plummeting the system’s

detection performance.

For a more detailed exposition of this problem setting, refer

to the conference proceedings of the 2017 IEEE Information

Theory and Applications Workshop (ITA) [14].
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