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Abstract

Due to their complex nature, it is hard to characterize the ways in which machine
learning models can misbehave or be exploited when deployed. Recent work on
adversarial examples, i.e. inputs with minor perturbations that result in substantially
different model predictions, is helpful in evaluating the robustness of these models
by exposing the adversarial scenarios where they fail. However, these malicious
perturbations are often unnatural, not semantically meaningful, and not applicable
to complicated domains such as language. In this paper, we propose a framework to
generate natural and legible adversarial examples by searching in semantic space of
dense and continuous data representation, utilizing the recent advances in generative
adversarial networks. We present generated adversaries to demonstrate the potential
of the proposed approach for black-box classifiers in a wide range of applications
such as image classification, textual entailment, and machine translation.

1 Introduction

With the impressive success and extensive use of machine learning models in various security-sensitive
applications, it has become crucial to study vulnerabilities in these systems. Dalvi et al. [6] show that
adversarial manipulations of input data often result in incorrect predictions from classifiers. This raises
serious concerns regarding the security of existing machine learning algorithms, especially when
even state-of-the-art models including deep neural networks have been shown to be highly vulnerable
to adversarial attacks with intentionally worst-case perturbations to the input [8, 14, 15, 18, 21].

Although these adversarial examples expose “blind spots” in machine learning models, they are
unnatural, i.e. these worst-case perturbed instances are not ones the classifier is likely to face when
deployed. Due to this, it is difficult to gain helpful insights into the fundamental decision behavior
inside the black-box classifier: why is the decision different for the adversary, what can we change in
order to prevent this behavior, is the classifier robust to natural variations in the data when not in an
adversarial scenario? Moreover, there is often a mismatch between the input space and the semantic
space that we can understand. Changes to the input we may not think meaningful, like slight rotation
or translation in images, often lead to substantial differences in the input instance. For example, Pei
et al. [19] show that minimal changes in the lighting conditions can fool automated-driving systems,
a behavior adversarial examples are unable to discover. Due to the unnatural perturbations, these
approaches cannot be applied to complex domains such as language, in which enforcing grammar and
semantic similarity is difficult when perturbing instances. Therefore, existing approaches that find
adversarial examples for text often result in ungrammatical sentences, as in the examples generated
by Li et al. [17], or require manual intervention, as in Jia and Liang [12].

In this paper, we propose a framework for generating natural adversarial examples, i.e. instances
that are meaningfully similar, valid/legible, and helpful for interpretation. The primary intuition
behind our proposed approach is to perform the search for adversaries in a dense and continuous
representation of the data instead of searching in the input data space directly. We employ generative
adversarial networks (GANs) [7] to learn a projection to map normally distributed fixed-length
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(a) Input instance (b) FGSM ∆x (c) FGSM adversary (d) Our ∆x (e) Our adversary “2”

Figure 1: Adversarial examples. Given an instance (a), existing FGSM approach [8] adds small
perturbations in (b), that change the prediction of the model (to be “2”, in this case). Instead of such
random-looking noise, our framework generates natural adversarial examples, such as in (e), where
the differences, shown in (d) (with blue/+, red/-), are meaningful changes to the strokes.

Figure 2: Model architecture. Our model consists of an adversarially trained generator, used to
decode perturbations of z to query the classifier, and a matching inverter to encode x to z.

vectors to data instances. Given an input instance, we search for adversaries in the neighborhood of
its corresponding latent representation by sampling within a range that is iteratively incremented.
Fig 1 provides an example of adversaries for digit recognition. Given an MLP classifier for MNIST
and an image from test data (Fig 1a), our approach generates a natural adversarial example (Fig 1e)
which is classified incorrectly as “2” by the classifier. Compared to the adversary generated by the
existing Fast Gradient Sign Method (FGSM) [8] that adds gradient-based noise (Fig 1c and 1b), our
adversary (Fig 1e) looks like a hand-written digit similar to the original input. Further, the difference
(Fig 1d) provides some insights into the behavior of the classifier, such as slightly thickening (color
blue) the bottom stroke of the input and thinning (color red) the one above it, fools the classifier.

2 Framework for Generating Natural Adversaries

Given a black-box classifier f and a corpus of unlabeled dataX , the goal here is to generate adversarial
example x∗ for a given data instance x that results in a different prediction, i.e. f(x∗) 6= f(x). In
general, the instance x is not in X , but comes from the same underlying distribution Px, which is the
distribution we want to generate x∗ from as well. Unlike other existing approaches that search directly
in input x space for adversaries, we propose to search in the corresponding dense representation
of z space. By searching samples in the latent low-dimensional z space and mapping them to x
space to identify the adversaries, we encourage these adversaries to be valid (legible for images, and
grammatical for sentences) and semantically close to the original input.

To tackle the problem described above, we incorporate GANs [7] as powerful generative mod-
els to learn how to represent the natural instances of the domain. We first train a Wasserstein
GAN [2] on corpus X , which provides a generator Gθ that maps random dense vectors z ∈ Rd
to samples x from the domain of X . We separately train a matching inverter Iγ to map data
instances to their corresponding dense representations by minimizing the reconstruction error:
minγ Ex∼preal(x)‖Gθ(Iγ(x))− x‖+ λEz∼pz(z)‖Iγ(Gθ(z))− z‖. Using these learned functions, we
define the natural adversarial example x∗ as the following:

x∗ = Gθ(z∗) where z∗ = argmin
z̃
‖z̃ − Iγ(x)‖ s.t. f(Gθ(z̃)) 6= f(x). (1)

Fig 2 shows the architecture of our approach. In our implementation, we utilize the inverter to obtain
the latent vector z = Iγ(x) of x, and feed perturbations z̃ in the neighborhood of z to the generator
to generate natural samples x̃ = Gθ(z̃). In order to identify the nearest natural sample that changes
the prediction from f , we incrementally increase the search range within which the perturbations z̃
are randomly sampled, until we have generated samples x′ that change the prediction. Among these
samples x′, we choose the one which has the closest z∗ to the original z as an adversarial example x∗.
Our current iterative search algorithm is sample-based and applicable to black-box classifiers with
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Table 1: Adversarial examples of MNIST. The top row shows images from original test data, and
the others show corresponding adversaries generated by our approach against both RF and LeNet.
Predictions from the classifier are shown in the corner of each image.

Original
1 2 3 4 5 6 7 8 9 0

Random
Forests

6 1 8 9 3 8 2 3 7 2

LeNet
6 1 8 9 3 8 2 3 7 2

Table 2: Adversarial examples against MLP classifier of LSUN by our approach. 4 original
images each of “Church” and “Tower”, with their adversaries of the flipped class in the bottom row.

church→tower tower→church

Origin

Adversary

no need of access to their gradients. Although it is inefficient compared to gradient-based methods,
it always guarantees to find an adversary, i.e. one that upper bounds the optimal adversary. We are
interested in exploring more efficient search methods later.

3 Illustrative Examples

We demonstrate the potential of our approach in generating informative, legible, and natural adver-
sarise by applying it to a number of classifiers for both visual and textual domains.

Image classification has been a focus for adversarial example generation due to the recent successes
in computer vision. We apply our approach to two standard datasets, MNIST and LSUN.

Handwritten Digits We train a WGAN on MNIST as in Gulrajani et al. [9], and include an inverter
with fully connected layers on top of critic’s last hidden layer. We train two target classifiers: Random
Forests (RF) (test accuracy 90.45%), and LeNet as in LeCun et al. [16] (test accuracy 98.71%). As
shown in Tab 1, our natural adversaries against both classifiers are quite similar to the original inputs
in overall style and shape, yet provide informative insights into classifiers’ decision behavior around
the input. Take the digit “5” as an example: dimming the vertical stroke can fool LeNet into predicting
“3”. Further we observe that adversaries against RF often look closer to the original images in overall
shape than those against LeNet. It implies that compared to LeNet, RF can be fooled by smaller
changes to the inputs; in other words, RF is less robust than LeNet in classification. Our approach is
helpful to compare and evaluate black-box classifier even in absence of labeled data.

Church vs Tower We apply our approach to outdoor, color images of higher resolution. We choose
“Church Outdoor” category in LSUN dataset [22], randomly sample the same amount of 126,227
images from “Tower” category, and resize them to 64×64. The training procedure is similar to
MNIST, except that the generator and critic in WGAN are deep residual networks [10]. Tab 2 presents
original images for both classes and corresponding adversaries against an MLP classifier with test
accuracy of 71.3%. We can observe that the generated adversaries make changes that are natural
for this domain. For example, to change the classifier’s prediction from “Church” to “Tower”, the
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Table 3: Textual Entailment. For a pair of premise (p : ) and hypothesis (h : ), we present the
generated adversaries for three classifiers by perturbing the hypothesis (h′ : ). The last column
provides the true label, followed by the changes in the prediction for each classifier.

Classifiers Sentences Label

Original p : The man wearing blue jean shorts is grilling. Contradiction
h : The man is walking his dog.

Embedding h′ : The man is walking by the dog . Contradiction → Entailment
LSTM h′ : The person is walking a dog . Contradiction → Entailment
TreeLSTM h′ : A man is winning a race . Contradiction → Neutral

adversaries sharpen the roof or narrow the buildings; and in the other direction, the image with the
Eiffel Tower is changed to a “church” by converting a girl into a building and narrowing the tower.

Generating grammatical and linguistically coherent adversarial sentences is a challenging task due
to the discrete nature of text . Prior work on generating textual adversaries [1, 12, 17] performs
word erasures and replacements directly on text input space x, using domain-specific rule based
or heuristic based approaches, or requires manual intervention. Our approach, on the other hand,
performs perturbations in the continuous space z, that has been trained to produce semantically and
syntactically coherent sentences automatically. We use the adversarially regularized autoencoder
(ARAE) [23] for encoding discrete text into continuous codes, and introduce an inverter that maps
these continuous codes into the Gaussian space of z. Our framework is trained on the SNLI [4] data.

Textual Entailment TE is a task designed to evaluate common-sense reasoning for language,
requiring both natural language understanding and logical inferences for text snippets. In this task, we
classify a pair of sentences, a premise and a hypothesis, into three categories depending on whether
the hypothesis is entailed by the premise, contradicts the premise, or is neutral to it. We use our
approach to generate adversaries by perturbing the hypothesis to deceive classifiers, keeping the
premise unchanged. We train three classifiers of varying complexity, namely, an embedding classifier
that is a single layer on top of the average word embeddings, an LSTM based model consisting of a
single layer on top of the sentence representations, and TreeLSTM [5] that uses a hierarchical LSTM
on the parses. A few examples comparing the three classifiers are shown in Table 3. Although all
classifiers correctly predict the label, as the classifiers get more accurate (from embdedding to LSTM
to TreeLSTM), they require much more substantial changes to the sentences to be fooled.

Machine translation We consider machine translation because not only is it one of the most
successful applications of neural approaches to NLP, but also most practical translation system
lie behind black-box access APIs. The notion of adversary, however, is not so clear here as the
output of a translation system is not a class. Instead, we define adversary for machine translation
relative to a probing function that tests the translation for certain properties, ones that may lead to
linguistic insights into the languages or detect potential vulnerabilities. We use the same generator
and inverter as in entailment, and find such “adversaries” via API access to the currently deployed
Google Translate model (as of October 15, 2017) from English to German.

First, let us consider the scenario in which we want to generate adversarial English sentences such
that a specific German word is introduced into the German translation. The probing function here
would test the translation for the presence of that word, and we would have found an adversary (an
English sentence) if the probing function passes for a translation. We provide an example of such a
probing function that introduces the word “stehen” (“stand” in English) to the translation in Tab 4.
Since the translation system is quite strong, such adversaries are not surfacing the vulnerabilities of
the model, but instead can be used as a tool to understand or learn different languages.

We can also design more complex probing functions, especially ones that target specific vulnerabilities
of the translation system. Let us consider translations of English sentences that contain two active
verbs, e.g. “People sitting in a restaurant eating”, and see that the German translation has the two
verbs as well, “essen” and “sitzen” respectively. We now define a probing function that passes only
if the perturbed English sentence s′ contains both the verbs, but the translation only has one of
them. An adversary for such a probing function will be an English sentence (s′) that is similar to
the original sentence (s), but its translation is missing one of the verbs. Table 5 presents examples
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Table 4: Machine Translation. “Adversary” that introduces the word “stehen” into the translation.
Source Sentence (English) Generated Translation (German)

s : A man and woman sitting on the sidewalk . Ein Mann und eine Frau, die auf dem Bürgersteig sitzen.
s′ : A man and woman stand on the bench . Ein Mann und eine Frau stehen auf der Bank.

Table 5: “Adversaries” to find dropped verbs. The left column contains the original sentence s
and its adversary s′, while the right contains their translations, with English translation in red.

Source Sentence (English) Generated Translation (German)

s : A man looks back while laughing and walking . Ein Mann schaut zurück, während er lacht und geht.
s′ : A man is laughing walking down the ground . Ein Mann lacht über den Boden.

(A man laughs over the floor.)

of generated adversaries using such a probing function: one that tests whether “essen” is dropped
from the translation when its English counterpart “eating” appears in the source (“People sitting in a
living room eating.”). These adversaries thus suggest a vulnerability in Google’s English to German
translation system: a word acting as a gerund in English often gets dropped from the translation.

4 Discussion and Future Work

Our framework fundamentally builds upon GANs as the generative models, and thus the capabilities
of GANs directly effects the quality of generated examples. Many recent approaches address how
to improve the training stability and the objective function of GANs [2, 9, 20]. In our practice, we
observe that we need to carefully balance the capacities of the generator, the critic, and the inverter
that we introduced, to avoid situations such as model collapse. For natural languages, because
of the discrete nature and non-differentiability, applications related to text generation have been
relatively less studied. Given that there are some concerns about whether GANs actually learn the
distribution [3], it is worth noting that we can also incorporate other generative models such as
Variational Auto-Encoders (VAEs) [13] into our framework, as used in Hu et al. [11] to generate text
with controllable attributes, whic we will explore in the future.

Our proposed algorithm for searching in the semantic space for adversaries is computationally
expensive since it is based on sampling and local-search. Search based on gradients such as FGSM
are not applicable to our setup because of black-box classifiers and discrete domain applications. We
can improve the search by using a coarse-to-fine strategy that finds the upper-bounds by using fewer
samples, and then performs finer search in the restricted range. The accuracy of our inverter mapping
the input to its corresponding dense vector in latent space is also important for searching adversaries
in the right neighborhood. In our experiments, we find that fine-tuning the latent vector produced by
the inverter with the GAN fixed can further refine the generated adversarial examples.

In this paper, we propose a framework for generating natural adversaries against black-box classifiers,
and apply the same approach to both visual and textual domains. We obtain adversaries that are
legible, grammatical, and meaningfully similar to the input. We show that these natural adversaries
can help in interpreting the decision behavior and evaluating the accuracy of black-box classifiers
even in absence of labeled training data. Our approach is applied to generating adversaries for a wide
range of applications including image classification, textual entailment, and machine translation.
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