Minimally-Supervised Extraction of Entities from Text Advertisements

Sameer Singh Dustin Hillard Chris Leggetter

Department of Computer Science
University of Massachusetts, Amherst MA

Yahoo! Labs, Silicon Valley
Santa Clara CA

Human Language Technologies: North American Chapter of the Association for Computational Linguistics (NAACL HLT)
June 2-4, 2010
1 Entity Extraction for Text Advertisements

2 Minimally Supervised Learning

3 Features
 Unsupervised Signal \(\{ f_k \} \)
 Semi-Supervised Signal \(\{ f'_k \} \)

4 Experiments

5 Conclusions
Outline

1. Entity Extraction for Text Advertisements
2. Minimally Supervised Learning
3. Features
 - Unsupervised Signal \(\{ f_k \} \)
 - Semi-Supervised Signal \(\{ f'_k \} \)
4. Experiments
5. Conclusions
Sponsored Search

- **Problem:** Given a web search query, which ads to display

 - Current solutions consider word- and phrase-based matches – doesn't always work very well:
 - Query: california hotel
 - Ad: Hotel California Lyrics

 - There is a need to understand the intent: Hotel California is a MediaTitle, not Lodging

 - In our work, intent takes the form of "entity recognition"
Sponsored Search

- **Problem:** Given a web search query, which ads to display
- Current solutions consider word- and phrase-based matches
 - doesn’t always work very well:

Query: california hotel
Ad: Hotel California Lyrics . . .
Sponsored Search

- **Problem**: Given a web search query, which ads to display
- Current solutions consider word- and phrase-based matches
 - *doesn’t always work very well*:

 Query: california hotel **Ad**: Hotel California Lyrics . . .

- There is a need to understand the *intent*

 Hotel California is a **MediaTitle**, not **Lodging**

- In our work, *intent* takes the form of “entity recognition”
Input: Bradley International Airport Hotel
Marriott Hartford, CT Airport hotel-free shuttle service & parking.
Input: Bradley International Airport Hotel
Marriott Hartford, CT Airport hotel-free shuttle service & parking.

Output: Bradley International Airport Hotel
Marriott Hartford, CT Airport hotel free shuttle service & parking.

Labels: airport, travel, lodging_name, product, city, state
Input: Bradley International Airport Hotel Marriott Hartford, CT Airport hotel-free shuttle service & parking.

Output: Bradley International Airport Hotel Marriott Hartford, CT Airport hotel free shuttle service & parking.

Labels: airport, travel, lodging_name, product, city, state

Combined Segmentation and Tagging
Label Taxonomy

place
airport
city
state
country
continent
zipcode
occasion
...

person
media_title
manufacturer
prod_name
event
business
media_business
...

org_name
sports_team
media_org
apparel_org
tech_org
airline
restaurant
lodging
...

product
tech_prod
auto_prod
media_prod
tech
travel
apparel
education_prod
other
...

45 such labels
Lots of unlabeled data available (millions of ads!)
Data

- Lots of unlabeled data available (millions of ads!)
- Labeling a small subset manually is not ideal:
 1. Expensive and time-consuming (domain knowledge required)
 2. Error-prone (editors disagree and make mistakes)
 3. Overfitting

Partially and noisily labeling lots of data is easy!

New Delhi is a City most of the time
Token that ends with .com is almost always a URL

Most tokens are useless, don't tag them

In this work, we rely only on such partial and probabilistic labels

Singh, Hillard, Leggetter (UMass, Yahoo!)
Minimally-Supervised Extraction of Entities
NAACL HLT 2010
Data

- Lots of unlabeled data available (millions of ads!)
- Labeling a small subset manually is not ideal:
 1. Expensive and time-consuming (domain knowledge required)
 2. Error-prone (editors disagree and make mistakes)
 3. Overfitting
- Partially and noisily labeling lots of data is easy!
• Lots of unlabeled data available (millions of ads!)
• Labeling a small subset manually is not ideal:
 1. Expensive and time-consuming (domain knowledge required)
 2. Error-prone (editors disagree and make mistakes)
 3. Overfitting
• Partially and noisily labeling lots of data is easy!
 • *New Delhi* is a *City* most of the time
 • Token that ends with *.com* is almost always a *URL*
 • *for*, *and* and *buy* are almost never *Airports*
 • Most tokens are useless, don’t tag them
• Lots of unlabeled data available (millions of ads!)
• Labeling a small subset manually is not ideal:
 1. Expensive and time-consuming (domain knowledge required)
 2. Error-prone (editors disagree and make mistakes)
 3. Overfitting
• Partially and noisily labeling lots of data is easy!
 - New Delhi is a City most of the time
 - Token that ends with .com is almost always a URL
 - for, and and buy are almost never Airports
 - Most tokens are useless, don’t tag them
• In this work, we rely only on such partial and probabilistic labels
Outline

1 Entity Extraction for Text Advertisements

2 Minimally Supervised Learning

3 Features
 Unsupervised Signal \(\{ f_k \} \)
 Semi-Supervised Signal \(\{ f'_k \} \)

4 Experiments

5 Conclusions
• **Input:** Each ad is a sequence x of tokens
Semi-Markov CRF Model

- **Input**: Each ad is a sequence x of tokens
- **Output**: Segmentation s for the input x where $s = \{s_j\}$ and segment $s_j = \langle str_j, end_j, y_j \rangle$
• **Input:** Each ad is a sequence x of tokens

• **Output:** Segmentation s for the input x where $s = \{s_j\}$ and segment $s_j = \langle \text{str}_j, \text{end}_j, y_j \rangle$

• **Features:** defined over segments, $\{f_k(x, s_j)\}_k$
 - Is the segment *New Delhi* and the label *CITY*
 - the segment length is ≥ 2
Semi-Markov CRF Model

- **Input:** Each ad is a sequence x of tokens
- **Output:** Segmentation s for the input x where $s = \{s_j\}$ and segment $s_j = \langle str_j, end_j, y_j \rangle$
- **Features:** defined over segments, $\{f_k(x, s_j)\}_k$
 - Is the segment New Delhi and the label CITY
 - the segment length is ≥ 2
- **Model p:** $Pr_p(s|x) = F(\{f_k(x, s)\}_k, \theta_p)$
 - If features are Markov, inference can be performed exactly\(^1\)

\(^1\)Sarawagi and Cohen, NIPS 2004
Given labeled data \(\{x_i, s_i\} \):

\[
\forall f_k, \sum_{i=1}^{N} E_{p(s|x_i)}[f_k(x_i, s)] = \sum_{i=1}^{N} f_k(x_i, s_i)
\]
Supervised Learning

Given labeled data $\{x_i, s_i\}$:

\[
\forall f_k, \sum_{i=1}^{N} E_p(s|x_i)[f_k(x_i, s)] = \sum_{i=1}^{N} f_k(x_i, s_i)
\]

- Unlabeled data do not have targets (RHS) for the expectations
Semi-Supervised Learning

Given labeled data \(\{ x_i, s_i \} \):

\[
\forall f_k, \sum_{i=1}^{N} E_{p(s|x_i)}[f_k(x_i, s)] = \sum_{i=1}^{N} f_k(x_i, s_i)
\]

- Unlabeled data do not have targets (RHS) for the expectations
- For a subset \(\{ f'_k \} \), provide constraints manually

\[
E[f'_k(x, s)] \geq u_k
\]

Singh, Hillard, Leggetter (UMass, Yahoo!) Minimally-Supervised Extraction of Entities NAACL HLT 2010
Given labeled data \(\{x_i, s_i\} \):

\[
\forall f_k, \sum_{i=1}^{N} E_{p(s|x_i)}[f_k(x_i, s)] = \sum_{i=1}^{N} f_k(x_i, s_i)
\]

- Unlabeled data do not have targets (RHS) for the expectations
- For a subset \(\{f'_k\} \), provide constraints manually

\[
E[f'_k(x, s)] \geq u_k
\]

\[
[[\text{Label=CITY given 'New Delhi'}}] \geq 0.5
\]
Given labeled data $\{x_i, s_i\}$:

$$\forall f_k, \sum_{i=1}^{N} E_p(s|x_i)[f_k(x_i, s)] = \sum_{i=1}^{N} f_k(x_i, s_i)$$

- Unlabeled data do not have targets (RHS) for the expectations
- For a subset $\{f'_k\}$, provide constraints manually

$$E[f'_k(x, s)] \geq u_k$$
$$[[\text{Label=City given ‘‘New Delhi’’}]] \geq 0.5$$

- Constraints on $\{f'_k\}$ are used to learn θ_p over all features $\{f_k\}$
 - online training algorithm in Bellare et al., UAI 2009
Outline

1 Entity Extraction for Text Advertisements

2 Minimally Supervised Learning

3 Features
 Unsupervised Signal \{f_k\}
 Semi-Supervised Signal \{f'_k\}

4 Experiments

5 Conclusions
Conventional CRF and semi-CRF Features

- Emission Features
 - Token × Label
 - WindowTokens × Label
- Transition Features
 - PrevLabel × Label
- Segment Features
 - SegLength == L
 - SegLength × Label
Conventional CRF and semi-CRF Features

- Emission Features
 - Token × Label
 - WindowTokens × Label
- Transition Features
 - PrevLabel × Label
- Segment Features
 - SegLength == L
 - SegLength × Label

We need more features to propagate the constraints
Segment Clusters

- **London** is similar to **Boston**, but context may not capture that
Segment Clusters

- **London** is similar to **Boston**, but context may not capture that
- Cluster segments based on a large corpus\(^2\)
 - take 5.1 billion English sentences from the web
 - use co-occurrence of segments as distance
 - cluster using K-Means

\(^2\)Pantel et al., EMNLP 2009
Segment Clusters

- **London** is similar to **Boston**, but context may not capture that
- Cluster segments based on a large corpus\(^2\)
 - take 5.1 billion English sentences from the web
 - use co-occurrence of segments as distance
 - cluster using K-Means
- Cluster identity of each segment is added as a feature
 - segments in the same cluster should have the same label

\(^2\)Pantel et al., EMNLP 2009
Topic Models

- Ads of the same domain will have similar label distribution
 - Ads in the travel domain usually have `PLACE` in it
Topic Models

- Ads of the same domain will have similar label distribution
 - Ads in the travel domain usually have `PLACE` in it
- The domains of the ads are unknown
 - approximate using unsupervised techniques
Topic Models

- Ads of the same domain will have similar label distribution
 - Ads in the travel domain usually have \texttt{PLACE} in it
- The domains of the ads are unknown
 - approximate using unsupervised techniques
- **Topic Models**: given a corpus of documents, identify the “topics”
 - run LDA to obtain topic distributions over the ads
- The topic distribution of each ad is used as a feature
Semi-Supervised Signal

- Constraints are features with associated target expectations
 - e.g. \([\text{Label}=\text{STATE} \text{ given} \ 'arizona'] \geq 0.5\)
Semi-Supervised Signal

- Constraints are features with associated target expectations
 - e.g. $\left[\text{Label=STATE given 'arizona'} \right] \geq 0.5$

- Specifying the targets is not easy:
 1. Use prior knowledge
 2. Evaluate on held-out data
 3. Use predictions to tweak the targets
 4. Use output of previous model

- Robustness to noise in targets has not been studied
Dictionary-Based

- Dictionary is a list of segments for a label
 - *airports, cities, countries, ...*

- Can be obtained from a number of different sources:
 - *databases, lexicons, manual collections, output of another model*
Dictionary-Based

- Dictionary is a list of segments for a label
 - airports, cities, countries, ...

- Can be obtained from a number of different sources:
 - databases, lexicons, manual collections, output of another model

- Constraint is added for segment match for each dictionary
 - accurate dictionaries get higher targets
Dictionary-Based

- Dictionary is a list of segments for a label
 - airports, cities, countries, ...
- Can be obtained from a number of different sources:
 - databases, lexicons, manual collections, output of another model
- Constraint is added for segment match for each dictionary
 - accurate dictionaries get higher targets
- **External Databases**
 - lexicons of airports, cities, countries etc. are easily available
 - for other labels, we use product databases within Yahoo!
Dictionary-Based

- Dictionary is a list of segments for a label
 - airports, cities, countries, …

- Can be obtained from a number of different sources:
 - databases, lexicons, manual collections, output of another model

- Constraint is added for segment match for each dictionary
 - accurate dictionaries get higher targets

- **External Databases**
 - lexicons of airports, cities, countries etc. are easily available
 - for other labels, we use product databases within Yahoo!

- **Query Entity-Extraction Model**
 - similar task of tagging web search queries (similar set of labels)
 - predictions are not good, but provide a weak signal
Pattern-Based

- Dictionaries don’t utilize the context
Pattern-Based

• Dictionaries don’t utilize the context
• Introduce *patterns* that provide additional signal
• Examples:
 • *Flights to Place*
 • *city of City*
 • *Looking for Product* find it here

• can also use pattern-discovery algorithms
Domain-Based

- Guide model predictions to avoid degenerate solutions
Domain-Based

- Guide model predictions to avoid degenerate solutions
- Priors of segmentation (independent of the labels)
 - \(\Pr(\text{SegLength} \leq 2) \geq 0.8 \)
 - \(\Pr(\text{SegLength} > 6) \leq \epsilon \)
 - Every dictionary also informs the segmentation
Domain-Based

- Guide model predictions to avoid degenerate solutions
- Priors of segmentation (independent of the labels)
 - $\Pr(\text{SegLength} \leq 2) \geq 0.8$
 - $\Pr(\text{SegLength} > 6) \leq \epsilon$
 - Every dictionary also informs the segmentation
- Priors on labels
 - $\Pr(\text{label} == \text{OTHER}) \geq 0.5$
Outline

1 Entity Extraction for Text Advertisements

2 Minimally Supervised Learning

3 Features
 Unsupervised Signal \(\{ f_k \} \)
 Semi-Supervised Signal \(\{ f'_k \} \)

4 Experiments

5 Conclusions
Setup

- **Data**
 - Two datasets: 14k and 42k randomly sampled ads from Yahoo!
 - Training Time: \(\sim\) 90 minutes and \(\sim\) 120 minutes
 - Inference Time: 8 minutes and 32 minutes
 - 2,157 ads labeled for evaluation (@20 – 25 ads per hour)
Experiments

Setup

• **Data**
 - Two datasets: $14k$ and $42k$ randomly sampled ads from Yahoo!
 - Training Time: ~ 90 minutes and ~ 120 minutes
 - Inference Time: 8 minutes and 32 minutes
 - 2,157 ads labeled for evaluation (@20 – 25 ads per hour)

• **Methods**
 1. **Bootstrapped**: Dictionary-based predictions
 2. **QSup**: Supervised model using labeled web queries
 3. **Our Method** has $14k$ and $42k$ variations

 • Only using labeled ads data gave extremely poor results
Experiments

Tokenwise Accuracy (w/ partial credit)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Dictionary</th>
<th>14k</th>
<th>42k</th>
<th>QSUp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Accuracy</td>
<td>46.6</td>
<td>62.7</td>
<td>64.9</td>
<td>68.5</td>
</tr>
<tr>
<td>non-OTHER Recall</td>
<td>20.5</td>
<td>41.2</td>
<td>32.5</td>
<td>34.2</td>
</tr>
<tr>
<td>non-OTHER Precision</td>
<td>16.3</td>
<td>33.3</td>
<td>35.7</td>
<td>46.9</td>
</tr>
<tr>
<td>F1-score</td>
<td>18.2</td>
<td>36.8</td>
<td>34.0</td>
<td>39.5</td>
</tr>
<tr>
<td>F2-score</td>
<td>19.5</td>
<td>39.3</td>
<td>33.1</td>
<td>36.1</td>
</tr>
</tbody>
</table>

Singh, Hillard, Leggetter (UMass, Yahoo!) Minimally-Supervised Extraction of Entities

NAACL HLT 2010

21 / 24
Outline

1 Entity Extraction for Text Advertisements

2 Minimally Supervised Learning

3 Features
 Unsupervised Signal $\{f_k\}$
 Semi-Supervised Signal $\{f'_k\}$

4 Experiments

5 Conclusions
Summary

Contributions

- Entity Recognition for advertisements without labeled data
Summary

Contributions

• Entity Recognition for advertisements without labeled data
• Real-world application of semi-supervised learning
Conclusions

Summary

Contributions

- Entity Recognition for advertisements without labeled data
- Real-world application of semi-supervised learning
- Not having any labeled data is not the end of the world
 - use existing resources as noisy supervision

Future Work

- Use in downstream applications (click prediction, ad retrieval, ...)
- Robustness to target expectations
- Add constraints that use other sources
Summary

Contributions

- Entity Recognition for advertisements without labeled data
- Real-world application of semi-supervised learning
- Not having any labeled data is not the end of the world
 - use existing resources as noisy supervision

Future Work

- Use in downstream applications (click prediction, ad retrieval, ...)
- Robustness to target expectations
- Add constraints that use other sources
Thanks!

Sameer Singh, Dustin Hillard and Chris Leggetter

University of Massachusetts, Amherst
Yahoo! Labs, Santa Clara