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Abstract
In relational databases, relations between objects, represented
by binary matrices or tensors, may be arbitrarily complex. In
practice however, there are recurring relational patterns such
as transitive, permutation, and sequential relationships, that
have a regular structure which is not captured by the classi-
cal notion of matrix rank or tensor rank. In this paper, we
show that factorizing the relational tensor using a logistic or
hinge loss instead of the more standard squared loss is more
appropriate because it can accurately model many common
relations with a fixed-size embedding (depends sub-linearly
on the number of entities in the knowledge base). We illus-
trate this fact empirically by being able to efficiently predict
missing links in several synthetic and real-world experiments.
Further, we provide theoretical justification for logistic loss
by studying its connection to a complexity measure from the
field of information complexity called sign rank. Sign rank is a
more appropriate complexity measure as it is low for transitive,
permutation, or sequential relationships, while being suitably
large, with a high probability, for uniformly sampled binary
matrices/tensors.

Introduction
In statistical relational learning, embedding models, or dis-
tributed representations, are gaining attention due to their
ability to efficiently learn and predict generic data models.
They can be viewed as direct extensions of factorization tech-
niques, such as Probabilistic Matrix Factorization (Salakhut-
dinov and Mnih 2008). Relational databases are often used
to store relations between objects that are transitive, such as
isAncestorOf. Permutation and inclusion relations are
also commonly used, for example to represent one-to-one
or one-to-many connections between tables. There are also
many relations that are sequential, such as in temporal data.
It is commonly believed that factorization models learned
on such relations are unlikely to perform well, since the un-
derlying matrix has nearly full, or close to full, rank. For
example, n-object transitivity can be represented as an n× n
upper-triangular matrix of rank n. Similarly, n-object permu-
tation matrices have rank n, and sequences represented by
the nextTo relation is upper-band-diagonal with rank n− 1.

As an alternative to the rank as a complexity measure for
relations, we first present the sign-rank, an existing measure
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of complexity for binary matrices. In short, the sign-rank of
a binary matrix M is the minimal rank of a real matrix that,
once thresholded, givesM . A nice property of the sign rank is
that it does not depend on the dimension for many common
matrices mentioned above, such as permutation matrices,
triangular matrices, or band-diagonal matrices. This means
that a constant size-embedding could be used in principle,
independent of the number of objects in the database, and
the sign rank is the minimal size of such embeddings to get a
perfect recovery. In practice, the sign rank is hard to compute,
but an approximate value can be obtained by factorizing the
tensor under a binary loss, such as the logistic negative log-
likelihood or the hinge loss. Such approximations do not lead
exactly to a constant rank, but to a rank that seems to scale
logarithmically (or at least sub-linearly) with the number
of entities. As a consequence, we can compactly represent
common logical relationships using embeddings, since such
models are both easy to learn and scale using continuous
optimization techniques. Thus using an embedding model
as well as minimizing a binary loss are good ingredients for
solving statistical relational learning problems.

Based on this theoretical insight, we show empirically that
the reconstruction is better with logistic loss. We apply it on
the permutation matrices (equivalent to identity matrices), on
transitivity relations that include partial order relationships,
and finally on sequences and spatial relationship. We do not
consider the relation types that corresponds to clusters or
set inclusion relationship in this work, because it has been
already well-studied in the spectral clustering community,
and therefore is known to have low-rank structure.

Statistical Relational Learning
Problem Setup
Assume we have K relations between entities. We make a
closed world assumption, i.e. we know that there are E enti-
ties in the world, denoted E := {e1, · · · , eE}. Each relation
is uniquely identified by a binary tensor of as many dimen-
sions as the arity of the relation, for example binary matrices
E×E for binary relations. Ones and zeros represent whether
the relation holds, or does not hold, between the two entities.

We assume we observe T pairs of grounded atoms
(Rkt(x̄t), yt)Tt=1 where kt is the index of the relation, x̄t =
(xt1, · · · , xtA(kt)) represents the t-th atom, where A(kt) is



the arity of the kt-th relation, and yt is the truth value of
this atom (true=1, false=0). Our goal is to answer a simple
query that returns the probability of the truth value of an
unobserved grounded atom RkT+1

(x̄T+1), denoted by the
binary variable y(T+1).

Classical relational databases do not handle such queries
and return usually a special symbol indicating a missing value
(usually the NULL value). Instead, probabilistic databases
define a probability distribution over tuples in the database,
that has a well defined interpretation under the possible world
semantics model. Statistical relational learning approaches
are machine learning techniques that compute probabilities
for the truth value of every unobserved tuple xT+1. The
most widely used approach is based on Markov Logic Net-
works (Richardson and Domingos 2004), but they face dif-
ficulty in scaling to massive datasets. Instead, we focus on
factorization methods that model atoms as multi-linear dot
products between entity embeddings.

Joint Factorization of Relational Data
Collective matrix and tensor factorizations are probabilistic
models of embeddings that have been independently pro-
posed by many authors over the last few years. The main
difference between the approaches is the way the multi-
linear dot-product is defined, including Tucker decomposi-
tion (Acar, Kolda, and Dunlavy 2011), Rescal model (Nickel,
Tresp, and Kriegel 2011), or the simpler but more scalable
CP/Parafac model (Singh and Gordon 2008).
Embeddings: Entities are entirely determined by their R-
dimensional embedding matrix Θ := (θ1, · · · , θE) ∈ <E×R,
where θi ∈ <R is the embedding of the i-th entity.
Atom probabilities: For the k-th relation, the probability
of an atom R(x1, · · · , xA) to hold is given by σ(s) :=

1
1+e−τ−s , where τ is a threshold learned with the embed-
dings. The score s is the multi-linear dot-product across
entities

〈
Ck; θx1

, θx2
· · · , θxA(k)

〉
where Ck represents the

core-tensor of the k−th relation. The core-tensors were con-
strained to be diagonal in our experiments because its com-
plexity scales linearly with the size of the embeddings, and is
equivalent to the Parafac/CP decomposition (Harshman and
Lundy 1984). TheR diagonal values of theCk are sometimes
called the embedding of the relations, as it has the same di-
mensionality as the entities embeddings θi, i ∈ {1, · · · , E}.

Learning
The embedding matrix Θ and the core tensors C :=
(C1, · · · , CK) are learned by maximizing the likelihood of
the observed atoms:

(Θ̂, Ĉ, τ̂) ∈ arg max
Θ,C,τ

T∑
t=1

log p(Rkt(x̄t) = yt) (1)

which is often obtained using stochastic gradient descent
(SGD) on the observations.

Complexity measures for Relations
Sign rank
The sign-rank is a measure of complexity for binary matrices
that dates back to early work on communication complexity,

a subfield of computational complexity (Alon, Frankl, and
Rodl 1985). The sign-rank rk±(Y ) of a binary matrix Y ∈
{0, 1}n×m is defined as the smallest rank of a real matrix X
such that if thresholded, we obtain the matrix Y . Formally,

rk±(Y ) = min
τ∈<,X∈<n×m

{rk(X); I{X+τ≥0} = Y } (2)

Link between the sign rank and loss minimization
A natural way to compute the sign-rank of a E × E ma-
trix Y , is the following: for multiple embedding sizes r =
1, 2, · · · , E, try to find the matrix of embeddings Θ and the
threshold τ such that I{ΘΘT+τ≥0} = Y . The sign rank is
the smallest embedding size for which this problem has at
least one solution. Finding such embeddings can be done
by minimizing the empirical risk

∑
(i,j)∈E2 I{δij(Θ;τ)6=Yij}

where δij(Θ, τ) = 1 if < θi, θj > +τ > 0 and 0 otherwise.
This non-continuous function is hard to minimize in general,
but can be approximated by the minimization of a continuous
relation of the empirical loss. In this paper, we use logistic
loss, but the hinge loss would work as well. When the matrix
Y is of sign-rank r, there exist embeddings of size r that give
an arbitrary small loss, but the magnitude of the embeddings
can grow arbitrarily large, similarly to logistic regression
estimated on separable data, so in practice we a use penalized
estimator, and recover the rank only approximately.

Sign rank of identity matrices
In many applications, multiple knowledge bases have the
same entities, but the correspondence between them is not
known. One of the most common scenarios is to match rela-
tions extracted from texts on one side (e.g. using semantic
role labeling and named entity recognition) to a static knowl-
edge base (such as Freebase) on the other side. This amounts
to estimating the sameAs relation, i.e. the equality relation,
using supervised information and prior assumptions about the
possible matches across the two data sources. In a simplified
setting, each entity appears only once in each of the knowl-
edge bases, which amounts to find an optimal assignment of
entities. This can be modeled as finding a permutation ma-
trix that maximizes the fit of the observed data. Rather than
using a dedicated algorithm such as the Hungarian method
to find this optimal matching, we show here that permuta-
tion matrices can be efficiently modeled by low-dimensional
embeddings. Up to a permutation of rows or columns, per-
mutation matrices are related to identity matrices, so we start
by illustrating a surprising fact about identity matrices.

The low-rank representation of the identity matrix using
the logistic model can be theoretically understood under the
sign rank umbrella: it is known for some time that identity
matrices can be uniquely represented by latent dimensions of
length 2 (Paturi and Simon 1986), meaning that the sign-rank
of identity matrices is two. To see this, one can represent
entities in two dimensions equally spaced on the unit circle.
The dot-product between two embeddings θi and θj will be 1
if the corresponding entities are the sames, i.e. if i = j, and
will be strictly smaller that 1 if the entities are different. It is
therefore enough to threshold the hyperplane at 1− ε, where
ε > 0 is arbitrary small. In practice by minimizing the logistic
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Figure 1: Identity matrix: F1 measure of the reconstruction of fully observed identity matrices of varying sizes, as function of
the embedding size (rank,R). The two curves correspond to the minimization of the squared loss and the logistic loss.
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Figure 2: Transitive relation learning with rank-3 embeddings.
Gray cells represent missing values in the training set (left).
We see that they are much more accurately recovered by
logistic loss (right) than linear loss (center).

loss, we recover the sign rank only approximately (Linial et
al. 2007), and this is shown in the next section.

Embeddings of Standard Relations
Ontology matching and sameAs relations
Low-rank identity matrix: When approximating the iden-
tity matrix, standard low-rank approaches based on Singular
Value Decomposition (SVD) give poor reconstruction error
because the identity matrix is full-rank, and thus embeddings
must have the same size as the number of entities in the
database. However, by minimizing the logistic loss instead of
the squared loss, we can represent the identity matrix using
a constant number of dimension, i.e. the embedding size is
nearly independent to the number of entities in the database.
This fact is illustrated on Figure 1 where the identity matrix
has been factorized using the squared loss (green curve) and
the logistic loss (red curve). One can see that SGD finds an
accurate reconstruction of the identity matrix for ranks that
are smaller than 3. In theory, the sign rank is two, but since
we converge to a local minima that is not the global one,
we can see that the rank remains small, even when the the
number of entities increases. Despite its simplicity, this exper-
iments shows that using embedding models on identity can be
meaningful, and since the ordering of the rows of columns is
arbitrary, this result extends directly to permutation matrices.

Transitive and Hierarchical Relations
We now show that low-rank representations with logis-
tic links can model transitive relationships accurately. A
binary relation R is called transitive when the literals
R(a, b) andR(b, c) are true implies thatR(a, c) is also true.

For example, the relations isOlderThan, isInsideOf,
isAncestorOf, or isLarger are transitive. Transitivity
often relates to the fact that there exists a partial ordering
of the entities with respect to an attribute that is not always
explicit: the relation isOlderThan implicitly assumes the
entities have an age. It seems therefore natural that this re-
lation can be represented by a low-dimensional embedding
representing this partial ordering. We start by considering
the simpler case of total ordering, which can be understood a
transitive relation that is also anti-symmetric.
Total ordering: When representing the relationR represent-
ing a total ordering as a E ×E matrix, we obtain, an upper
triangular matrix, up to a permutation of rows and columns.
The rank of such matrix is naturally E, i.e. the maximal rank,
as no row or column can be expressed as a linear combination
of the others, but the sign rank is only one, as it is enough
to represent the entities on a uni-dimensional scale on which
the order is preserved. Again, we see that the rank is not
an appropriate measure of the complexity of the relation: it
has the maximum possible value when the relation implicitly
assumes there is a one-dimensional scale that could uniquely
represent the individuals with respect to this relation, i.e. it
has a sign rank of one.
Group ordering: We consider the more interesting example
of a transitivity relation that only holds within groups of
entities. In this setting, entities are members of n unrelated
families. Each family has exactly k members, for a total of
E = nk entities. For a fixed set of families, we observe
the full set of possible relations, which are transitive within
this group. By a proper ordering of the entities, relational
matrix is a block-diagonal matrix in which blocks are upper
triangular, as shown in Figure 2. In this example, we removed
some of the transitivity relations for 10% of the relations, and
learned the model by treating these removed relations as
missing (grey cells). Once learned, the embedding model,
even if the transitivity was not constrained a priori, should
use statistical redundancies to correctly find that the relation
is true when the transitivity rule should apply. In such a case,
we can safely say that the model is able to perform transitivity
reasoning. The learning process is illustrated on Figure 2: on
the left, the training data assumes that we observed all but few
relation in the last two families (we used n=5 families and
k = 4 members per family). When predicting the relations
according to the logistic model (right figure), we see that
most of the training data are recovered, but the model was
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Figure 3: Sequential relation learning with rank-3 embed-
dings. The predictive accuracy of logistic-loss model is much
higher.

Squared Logistic
Rank, R 5 10 20 5 10

Inside 0.0 33.3 0.0 88.9 100.0
Neighbor 0.0 50.0 72.3 50.0 83.3
Overall 0.0 42.9 50.0 70.6 90.9

Table 1: F1 on the heldout atoms of the Countries dataset.

also able to predict the missing entries which illustrates the
fact that transitivity has a low-complexity using logistic loss.
The squared loss (middle matrix), as expected in such block-
diagonal matrices, is not able to generalize transitivity to the
last two families.
Hierarchies: Hierarchies are more complex in the sense that
transitivity is true along every ancestor part. Example of such
relations are isSubpartOf or isInsideOf. Such rela-
tions have similar structure as groups. This will be presented
in the country relationship experiment below.

Sequential and Spatial Relationship
Sequences can be easily represented by an upper band-
diagonal matrix that represents the existence of a forward
relation, such as isNext. In this example as well, if a posi-
tive entry is missing, it is recovered by link prediction using
a rank-3 embedding. This is illustrated in a missing data ex-
periment, in which we generate a 1-hop or 2-hop sequential
relationship by setting the relation R(xi, xj) to true when
j = i+ 1 or j = i+ 2. This is illustrated in Figure 3, where
we see that the squared loss is unable to identify the exact
relation, and gives non-calibrated probabilities (the black or
white region indicate predictions that were > 1 or < 0).

Experiments with Country Relationships
We also experiment on a dataset of countries generated
from public geographical data1. We created two relations:
isInside(e1, e2), and isNeighbor(e1, e2). Entities
include the four continents (we merged Asia and Europe),
22 subcontinents and 245 countries. Each country has ex-
actly one continent and one subcontinent for which the
isInside relation is true, and similarly each subcontinent
has exactly one continent. The isNeighbor relation holds
for land borders only. We divided the data in four train and
test sets, where train sets contain all true and false relations

1https://github.com/mledoze/countries

involving at least one entity from three continents, while re-
lations involving two entities from the remaining continent
are unknown. The test set contains queries for both relations
on the remaining continent, that were chosen to accurately
test the reasoning abilities of the model. We will make the
dataset, and our train/test splits, publicly available.

Results of the prediction are shown in Table 1, where we
compare the accuracy measures for different embedding sizes
and losses. We see that the squared loss is not able to correctly
predict the relations, even for larger embeddings size, while
the use of logistic loss give nearly perfect prediction accuracy
for embeddings of only size 10.

Conclusions
For a long time, practitioners have been reluctant to use
embedding models because many common relationships, in-
cluding the sameAs relation modeled as an identity matrix,
were not trivially seen as low-rank. In this paper we showed
that when sign-rank based binary loss is minimized, many
common relations such as permutation matrices, sequential
relationships, and transitivity can be represented by surpris-
ingly small embeddings
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