
Last Modified: March 5, 2018

CS 295: Statistical NLP: Winter 2018

Homework 4: Neural Machine Translation
Sameer Singh (and Robert L. Logan)
http://sameersingh.org/courses/statnlp/wi18/

One of the most widespread and public-facing applications of natural language processing is machine trans-
lation. It has gained a lot of attention in recent years, both infamously for its lack of ability to understand the
nuance in human communications, and for near human-level performance achieved using neural models. In this
homework, we will be looking at neural machine translation from modern English to Shakespearean English. The
submissions are due by midnight on March 18, 2018.

1 Task: Neural Machine Translation

Machine translation is the task of designing a model which automatically translates text or speech from one lan-
guage (which we refer to as the source language S) to another language (which we refer to as the target language
T). In order to train such a model, we assume we have access to a parallel corpus C = {< s, t> | s ∈ S, t ∈ T}
of pairs of sentences in each language which have equivalent meanings. Our goal is then to find a model which
maximizes the probability P(t|s) for the sentences in this corpus.

The sub-field of neural machine translation parameterizes this probability distribution as a neural network.
I will briefly describe the neural machine translation model in this section. For more details you should refer to
Sutskever et al.’s paper on the topic available here: https://arxiv.org/pdf/1409.3215.pdf.

1.1 Sequence-to-sequence Models

At its core, this problem entails mapping a sequence of inputs (words in the source language) to a sequence
of outputs (words in the target language). As we’ve discussed in class, recurrent neural networks (RNNs) are
effective at working with this kind of sequential data. One difficulty that arises in machine translation is that
there is not a one-to-one correspondence between the input and output sequence. That is, the sequences are
typically of different lengths and the word alignment may be non-trivial (e.g. words that are direct translations
of each other may not occur in the same order).

To address these issues, we will use a more flexible architecture known as a sequence-to-sequence model.
This model is composed of two parts, an encoder and a decoder, both of which are RNNs. The encoder takes as its
input the sequence of words in the source language, and outputs the final hidden states of the RNN layers. The
decoder is similar, except it also has an additional fully connected layer (w/ softmax activation) used to define a
probability distribution over the next words in the translation. In this way, the decoder essentially functions as
a neural language model for the target language. The key difference is that the decoder uses the output of the
encoder as its initial hidden state, as opposed to a vector of zeros.

1.2 Data and Source Code

I have released the initial source code, available at https://github.com/sameersingh/uci-statnlp/tree/
master/hw4, and the data archive available on Canvas. You will need to uncompress the archive, and put it in
the data/ folder for the code to work. The source code contains the following:
◦ config.yaml : This file lists all of the hyperparameters used by the model, as well as the location of the data

used by the model. It will be copied to the folder where your model checkpoints are saved during training.
This is done to prevent you from inadvertently making changes to your hyper-parameters in the middle of
training, as well as to remind you of the exact configurations used for the experiments you perform (which
is useful if you train many different models). If you introduce additional hyper-parameters to the model
(e.g. dropout-rate, number of layers, etc.) I recommend keeping track of them in this file.

◦ model.py : This code provides implementations of the Encoder and Decoder modules. The basic structure
is similar to the examples in the recurrent neural network tutorial notebook1, however there are a few key
differences:

1https://github.com/sameersingh/uci-statnlp/tree/master/tutorials/rnn_examples.ipynb

Homework 4 UC Irvine 1/ 4

http://sameersingh.org/courses/statnlp/wi18/
https://arxiv.org/pdf/1409.3215.pdf
https://github.com/sameersingh/uci-statnlp/tree/master/hw4
https://github.com/sameersingh/uci-statnlp/tree/master/hw4
https://github.com/sameersingh/uci-statnlp/tree/master/tutorials/rnn_examples.ipynb

CS 295: Statistical NLP Winter 2018

1. The encoder and decoder are separate models. Both consist of an embedding layer which is fed into a
RNN. For the encoder, we are only concerned with using the hidden states from the RNN so the model
only contains these two components. For the decoder, we want to define a probability distribution over
the words in the target language so the model also includes a fully connected layer with a softmax
activation function.

2. Both modules are designed to take inputs one-by-one instead of in batches. This prevents having to
sort/pack/mask the source and target sentences, which can be complicated as the source and target
sentence are not guaranteed to have the same length.

Any architectural changes you make should be done in this file.
◦ train.py : This script is used to train your model. Example usage:

1 python train.py --config config.yaml

You will probably not need to modify this file unless you decide to use a training method other than teacher-
forcing, or an optimizer other than Adam.

◦ evaluation.py : This script will measure the BLEU score of your model on the test set, as well as provide
a couple example translations for qualitative evaluation. Example usage:

1 python evaluate.py --config config.yaml

◦ utils/data.py : Defines the ShakespeareDataset class. Used to load the parallel corpora into tensors.
◦ utils/vocab.py : Defines the Vocab class. Used to associate an integer id to the words encountered in

the corpora.
Details about what you need to implement is in the sections below.

2 What to Submit?

This assignment is designed to be extremely open-ended. The only task is to improve upon the provided baseline
model. Accordingly, there are a variety of things you can try. Here are a couple suggestions:

Trivial modifications:
◦ Use an LSTM/GRU cell in place of the RNN.
◦ Make the encoder bidirectional.
Easy modifications:
◦ Vary number of hidden layers/ units in the model. Perform experiments to determine the optimal amount.
◦ Add a regularization penalty to the loss, and determine the optimal regularization strength.
◦ Apply dropout between layers. Perform experiments to determine the optimal dropout rate.
Medium modifications:
◦ Use attention in the Decoder . There are a lot of different variants you can try, this survey gives a good

overview: https://nlp.stanford.edu/pubs/emnlp15_attn.pdf.
◦ In the Encoder , use frozen word embeddings pretrained on a large corpus. Hint: the source language is

modern English, we’ve already provided numerous corpora in previous homeworks which could be used to
learn the embeddings. Alternatively, you could use pretrained word2vec2 or GloVe3 embeddings.

Hard modifications:
◦ Derive word embeddings by performing character-level convolutions. For more detail, read: https://
arxiv.org/abs/1508.06615.

◦ Improve decoding by using beam search, and determine the optimal beam-width.
Prepare and submit a single write-up (PDF, maximum 5 pages) and your model.py and any other modified files
(compressed in a single zip or tar.gz file; we will not be compiling or executing it, nor will we be evaluating
the quality of the code) to Canvas. Your final score will be based on the following criteria.

2.1 Difficulty of Approach (50 points)

As the suggestions above indicate, some modifications may be much more difficult to implement than others. In
order to encourage students to pursue more difficult approaches, points will be assigned based on the amount
of effort put into the work. We assume as a baseline that all students will make the trivial modifications to the
model. After that basic rubric is: 1hard modification= 2medium modifications= 3easy modifications. To make
this more clear, full credit would be earned in each of the following scenarios:

2https://code.google.com/archive/p/word2vec/
3https://nlp.stanford.edu/projects/glove/

Homework 4 UC Irvine 2/ 4

https://nlp.stanford.edu/pubs/emnlp15_attn.pdf
https://arxiv.org/abs/1508.06615
https://arxiv.org/abs/1508.06615
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/

CS 295: Statistical NLP Winter 2018

◦ Student A: Uses LSTM cells in all experiments. Performs grid search to determine the optimal number of
hidden layers / hidden units. After that the student then determines the optimal regularization strength.

◦ Student B: Implements an attention mechanism in the decoder, then performs validation to determine the
optimal number of hidden layers to use and whether LSTM or GRU units perform better.

◦ Student C: Uses GRU cells. Implements character-level convolutions to obtain word embeddings.

2.2 Quality of the Write-Up (50 points)

You should give a detailed description of the approach you took in the above section, using tables and figures
to describe what you did. Separately, you need to perform an analysis of your approach, in terms of the both
quantitiative (BLEU score) and qualitative (examples of translations) results, again, using tables and figures as
necessary. In the above examples the students could receive full credit by doing the following:

◦ Student A: Gives a basic description of what an LSTM is. Then describes the experiments they carried
out, and the reasoning behind them. For example, why did they change the number of hidden units? What
happens when there are too few hidden units? What happens when there are too many? They then describe
the results of their experiments, both verbally and through figures (e.g. a 2D heatmap of dev loss where
the x and y axes are the number of hidden layers and hidden units respectively, and line plot of the dev
loss/BLEU score as a function of the regularization strength). Lastly, they provide a table comparing the
BLEU score of their best model to the baseline model on the test set.

◦ Student B: Gives a basic description of the attention mechanism they implemented. Then provide a plot
of the attention weights for an example translation, and comment on the plot. They then describe their
experiments/results similar to how Student A did above. Lastly, they provide a table comparing the BLEU
score of their best model to the baseline model on the test set.

◦ Student C: Gives a thorough description of how character-level convolutions work. They then compare the
word embeddings they obtained to the word embeddings learned by the baseline model (see Table 6 in the
reference paper for a good example of how to do this). They then provide a qualitative analysis of the model
outputs (e.g. find an example translation where their model performs better than the baseline model, find
examples where it does not work as well, etc.). Lastly, they provide a table comparing the BLEU score of
their best model to the baseline model on the test set.

3 Suggestions/Tips

Being the last homework, I really do not want you to be struggling with it. Please post on Piazza if you have any
concerns, and come to my/Rob’s office hours. That said, here are some suggestions to consider.

◦ If you want your model to finish training before the deadline, you will almost certainly need to train
it using a GPU. As noted on Piazza, Google has provided free credits to use its cloud computing platform for
this purpose (and you can request for more credits if needed). Instructions for getting started are provided
in the tutorials section of the course GitHub repository4. We have provided an Ubuntu image with all of the
necessary software/drivers pre-installed. Accordingly, lack of access to computational resources will not be
considered a valid excuse for not finishing this homework.

◦ Start early. Especially, if you are unfamiliar with neural networks, UNIX-based operating systems, and/or
the PyTorch API. As noted above, neural networks take a considerable amount of time to train. Furthermore,
it can be difficult to debug errors when making changes to the provided architecture. This, in order to ensure
that you meet the deadline we recommend you get started on this assignment right away.

◦ Consult the PyTorch documentation and tutorials. The documentation should be your first point-of-
reference if you run into issues using any of the neural modules, and looking at the tutorials may help
clarify how to implement certain architectures (**cough** **cough** attention **cough** **cough**).

4https://github.com/sameersingh/uci-statnlp/blob/master/tutorials/setting_up_google_cloud.md

Homework 4 UC Irvine 3/ 4

https://github.com/sameersingh/uci-statnlp/blob/master/tutorials/setting_up_google_cloud.md

CS 295: Statistical NLP Winter 2018

4 Statement of Collaboration

It is mandatory to include a Statement of Collaboration in each submission, with respect to the guidelines below.
Include the names of everyone involved in the discussions (especially in-person ones), and what was discussed.

All students are required to follow the academic honesty guidelines posted on the course website. For pro-
gramming assignments, in particular, I encourage the students to organize (perhaps using Piazza) to discuss the
task descriptions, requirements, bugs in my code, and the relevant technical content before they start working
on it. However, you should not discuss the specific solutions, and, as a guiding principle, you are not allowed
to take anything written or drawn away from these discussions (i.e. no photographs of the blackboard, written
notes, referring to Piazza, etc.). Especially after you have started working on the assignment, try to restrict the
discussion to Piazza as much as possible, so that there is no doubt as to the extent of your collaboration.

Since we do not have a leaderboard for this assignment, you are free to discuss the numbers you are getting
with others, and again, I encourage you to use Piazza to post your translations and compare them with others.

Acknowledgements

This homework was made possible by the course reader Robert Logan, who wrote both the source code and this
assignment description. In addition, we would like to thank the PyTorch team whose machine translation tutorial
was drawn heavily from to create this assignment.

Homework 4 UC Irvine 4/ 4

	Task: Neural Machine Translation
	Sequence-to-sequence Models
	Data and Source Code

	What to Submit?
	Difficulty of Approach (50 points)
	Quality of the Write-Up (50 points)

	Suggestions/Tips
	Statement of Collaboration

