Parsing, Contd

Prof. Sameer Singh

CS 295: STATISTICAL NLP WINTER 2017

February 9, 2017

Based on slides from Dan Jurafsky, Noah Smith, Slav Petrov, and everyone else they copied from.

Outline

Syntactic Parsing: CKY Algorithm

Probabilistic CFGs

Dependency Parsing

Outline

Syntactic Parsing: CKY Algorithm

Probabilistic CFGs

Dependency Parsing

Review of Syntactic Parsing

$$T - \{ man, book, cvg \dots \}$$

 $r - \{ man, book, cvg \dots \}$
 $N - \{ \leq, NP, VP, Nown, Verbs, PP \dots \}$
 $R - \{ S \Rightarrow NP VP, Nown \Rightarrow man, VP \Rightarrow Verb PP \dots \}$
Parse Tree
 $\chi, G \Rightarrow Tree$
 $r - \{ ree$

Dynamic Programming

T[i,j] = Set of all valid non-terminals for the constituent span (i,j)

CKY Algorithm

CKY Algorithm: Complexity

N: Number of non-terminals

R: Number of rules

n: Number of tokens in the sentence

Outline

Syntactic Parsing: CKY Algorithm

Probabilistic CFGs

Dependency Parsing

Ambiguity: Which parse?

I shot an elephant in my pajamas.

Finding the Best Parse Tree

Cats scratch people with cats with claws.

Probabilistic CFGs

Same as a regular context-free grammar:

- Terminal, non-terminals, and rules
- Additionally, attach a probability to each rule!

Rule: $A \rightarrow B C$

Probability:
$$P(A \rightarrow BC \mid A)$$

Compute the probability of a parse tree:

$$p(t) = P(\text{the lDet})P(\text{flight}|N) \dots$$

 $p(NPVP|s)$

Estimating the probabilities

$$p(\alpha \rightarrow \beta \mid \alpha) = \frac{\# \alpha \rightarrow \beta \text{ appears}}{\# \alpha \text{ appears}}$$

The Parsing Problem

Given sentence **x** and grammar **G**,

Recognition

Is sentence **x** in the grammar? If so, prove it. "Proof" is a deduction, valid parse tree.

Parsing

Show one or more derivations for **x** in **G**.

 $\operatorname*{argmax}_{\boldsymbol{t} \in \mathcal{T}_{\boldsymbol{x}}} p(\boldsymbol{t} \mid \boldsymbol{x})$

Even with small grammars, grows exponentially!

Probabilistic CKY Algorithm

T[i,j,A] = Probability of the best parse with root A for the span (i,j) $\Box T[o,n,S]$ $Rule: P(A \rightarrow word[j])$ Base case

word[j]

Recursion

Rule: P($A \rightarrow BC$)

T[j-1,j,A] = P(word[j] | A)

Try every position k, and every non-terminal pair:

 $T[i,j,A] = \max P(B C | A) T[i,k,B] T[k,j,C]$ k

Lexicalizing a CFG

Lexicalizing a CFG

Lexicalizing a CFG

Outline

Syntactic Parsing: CKY Algorithm

Probabilistic CFGs

Dependency Parsing

Represent only the syntactic dependencies...

Nested Structure = Subtrees

Dependency Labels

Dependency Labels

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
ССОМР	Clausal complement
ХСОМР	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction

Projective vs Non-projective

۲

Evaluating Dependency Parses

Parsing Algorithms

Transition-based

- Fast, greedy, linear-time
- Trained for greedy search
- Features decide what to do next
- Beam search, i.e. k-best

Graph-based

- Slower, exhaustive algorithms
- Dynamic programming, inference
- Features used to score whole trees

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]		LEFTARC	(morning \leftarrow flight)
7	[root, book, the, flight]	[]	LEFTARC	$(\text{the} \leftarrow \text{flight})$

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]	[]	LEFTARC	(morning \leftarrow flight)
7	[root, book, the, flight]	[]	LEFTARC	$(\text{the} \leftarrow \text{flight})$
8	[root, book, flight]	[]	RIGHTARC	$(book \rightarrow flight)$
9	[root, book]	[]	RIGHTARC	$(root \rightarrow book)$
10	[root]	[]	Done	

Graph-based Parsing

or gmax score
$$(t)$$

 $t \in Tr$
 $|s^{t} \circ rder / arc-factored$
 $\geq \theta \cdot \phi (P_{e}, (e, le))$
 $e \quad \theta \cdot \phi (P_{e}, (e, le))$
 $Proj: Dynamic P$
 $N Proj: Maximum Spanning Tree$
 $2rd \quad \xi \quad score(e_{1},e_{2})$
 $\leq 3rd \quad \xi \quad score(e_{1},e_{2},e_{3})$
 e_{1},e_{2},e_{3}

Eisner Algorithm

Upcoming...

- Homework 2 is due on Monday
- Homework
- Grades for Homework 1 will be released today.

- Status report due in ~2 weeks: February 21, 2017
- Instructions coming soon
- Only 5 pages

Summaries

Project

- Paper summaries: February 17, February 28, March 14
- Only 1 page each