Syntactic Parsing

Prof. Sameer Singh

CS 295: STATISTICAL NLP WINTER 2017

February 7, 2017

Based on slides from Nathan Schneider, Noah Smith, Marine Carpuat, Dan Jurafsky, and everyone else they copied from.

Outline

Syntactic Parsing

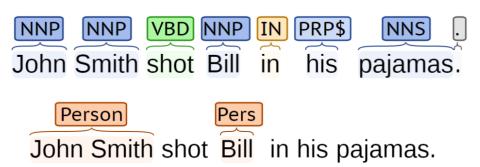
Context Free Grammars

Parsing: CKY Algorithm

CS 295: STATISTICAL NLP (WINTER 2017)

Outline

Syntactic Parsing


Context Free Grammars

Parsing: CKY Algorithm

CS 295: STATISTICAL NLP (WINTER 2017)

Limitations of Sequence Tags

John Smith shot Bill in his pajamas.

What happened? Who shot who? Who was wearing the pajamas?

Constituents

- Constituent behave as a unit that can be rearranged: John talked [to the children] [about drugs]. John talked [about drugs] [to the children]. John talked drugs to the children about
- Or substituted/expanded:

John talked [to the children taking the drugs] [about alcohol].

three parties from Brooklyn

"Noun phrases appear before verbs in English."

Constituents and Grammars

Grammar

- Tells you how the constituents can be arranged
- Implicit knowledge for us (we often can't tell why something is wrong)
- Generate all, and only, the possible sentences of the language
- Different from meaning:

Colorless green ideas sleep furiously.

- The words are in the right order,
- And that ideas are green and colorless,
- And that ideas sleep,
- And that sleeping is done furiously,
- As opposed to: "sleep green furiously ideas colorless"

Uses of Parsing

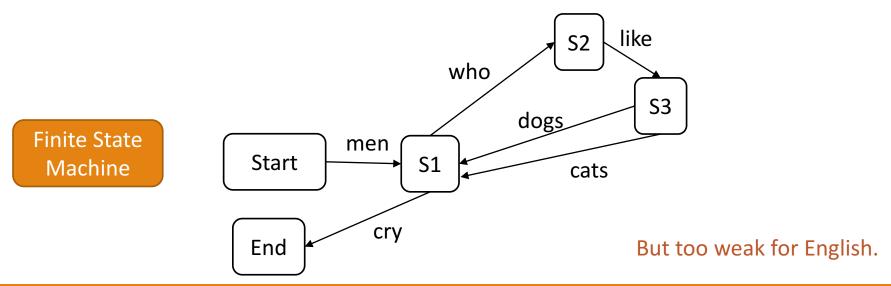
[send [the text message from James] [to Sharon]]

[translate [the message] [from Hindi] [to English]]

- Grammar checkers
- Dialog systems
- High precision question answering
- Named entity recognition
- Sentence compression
- Extracting opinions about products
- Improved interaction in computer games
- Helping linguists find data
- Machine translation
- Relation extraction systems

Outline

Syntactic Parsing

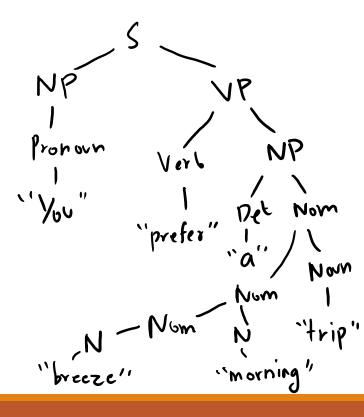

Context Free Grammars

Parsing: CKY Algorithm

CS 295: STATISTICAL NLP (WINTER 2017)

Basic Grammar: Regular Expr.

- You can capture individual words:
 - (man|dog|cat)
- Simple sentences:
 - (man|dog|cat)(ate|loves|consumed)(.|food|lunch)
- Infinite length? Yes!
 - men (who like (cats | dogs))* cry.

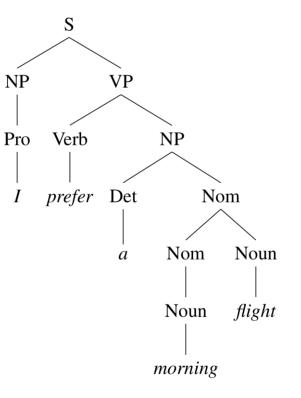

Context-Free Grammars

``(on stituents" Non-terminal Symbols, N Terminal Symbols, T Grammar, G Sman, dog, cat, likes ... 5 S, NP, VP,... Voun, Verb, DET n.t. sintence Rules $A \rightarrow BCD_{K_{selifn.t.}}$ A>BAB BAB A -> W < a single terminal BBABB × B*AB Grammar applies rules recursively..

If we can construct the input sentence, it is in the grammar, otherwise not.

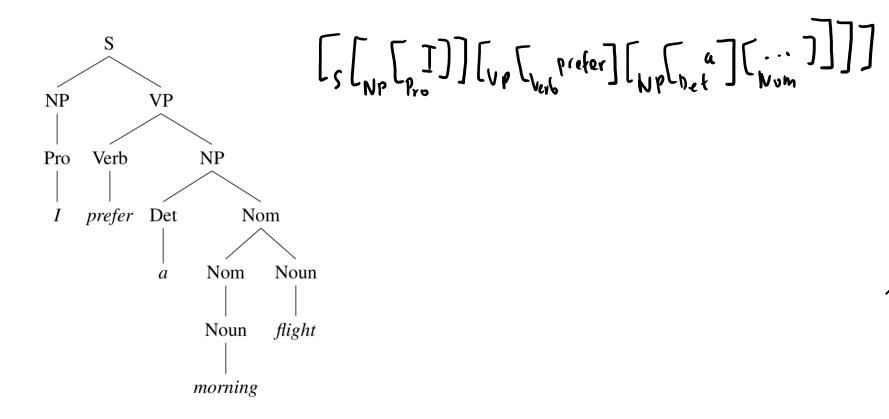
$$\begin{array}{cccc} A \rightarrow w_{1} & & & & \\ A \rightarrow w_{1} & & & \\ A \rightarrow w_{1} & &$$

Gramma	r Rules	Examples
$S \rightarrow$	· NP VP	I + want a morning flight
	Pronoun Proper-Noun Det Nominal	I Los Angeles a + flight
$Nominal \rightarrow$	Nominal Noun Noun	morning + flight flights
$VP \rightarrow $	· Verb Verb NP Verb NP PP Verb PP	do want + a flight leave + Boston + in the morning leaving + on Thursday
$PP \rightarrow$	• Preposition NP	from + Los Angeles

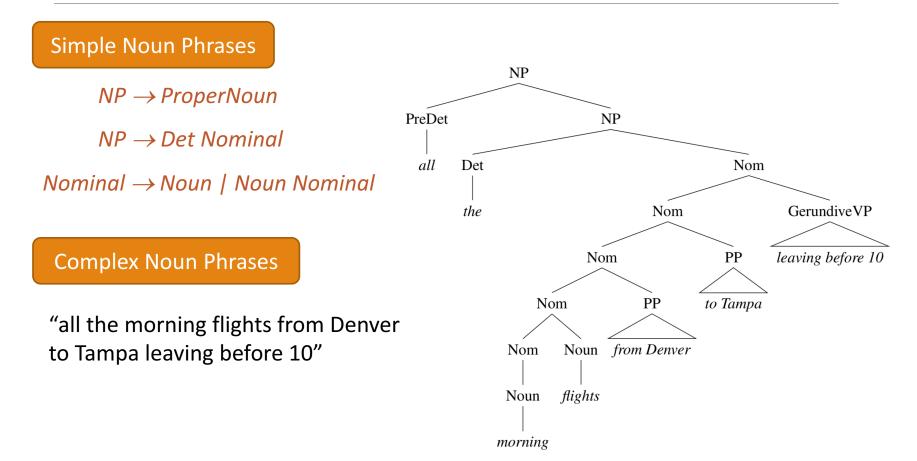


Example Parse Tree

NP-> Asize A con No AdjNP


I prefer a morning flight.

Grammar	Rules	Examples
$S \rightarrow$	NP VP	I + want a morning flight
$NP \rightarrow$	Pronoun	Ι
	Proper-Noun	Los Angeles
	Det Nominal	a + flight
Nominal \rightarrow	Nominal Noun	morning + flight
	Noun	flights
$VP \rightarrow$	Verb	do
	Verb NP	want + a flight
l l	Verb NP PP	leave $+$ Boston $+$ in the morning
İ	Verb PP	leaving + on Thursday
$PP \rightarrow$	Preposition NP	from + Los Angeles



Example Parse Tree: Brackets

I prefer a morning flight.

More details: Noun Phrases

Recursive Noun Phrases

this is the house

this is the house that Jack built

this is the cat that lives in the house that Jack built

this is the dog that chased the cat that lives in the house that Jack built

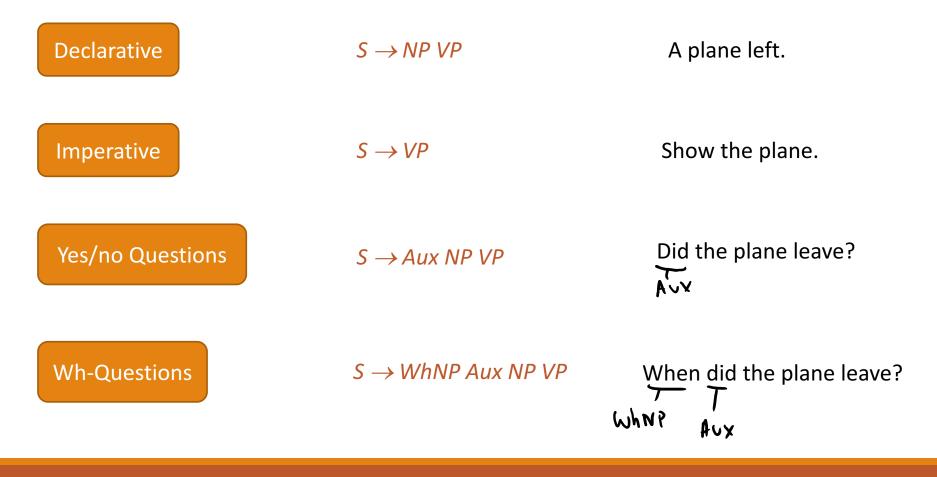
this is the flea that bit the dog that chased the cat that lives in the house the Jack built

this is the virus that infected the flea that bit the dog that chased the cat that lives in the house that Jack built

More details: Verb Phrases

Simple Verb Phrases

 $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP PP$ $VP \rightarrow Verb PP$


disappear prefer a morning flight leave Boston in the morning leave in the morning

But all verbs are not the same! (this grammar overgenerates)

Solution: subcategorize!

Sneezed: John sneezed.			
Find:	Please find a flight to NY.		
Give:	Give me a cheaper fare.		
Help:	Can you help me with a flight?		
Prefer:	I prefer to leave earlier.		
Told:	I was told United has a flight.		

Types of Sentences

Source of Grammar?

Manual

Noam Chomsky

Write symbolic grammar (CFG or often richer) and lexicon

$3 \rightarrow NP VP$	$NN \rightarrow IIIIeIest$
NP ightarrow (DT) NN	$NNS \rightarrow rates$
$NP \to NN \ NNS$	$NNS \rightarrow raises$
$NP\toNNP$	$VBP \rightarrow interest$
$VP \rightarrow V NP$	$VBZ \rightarrow rates$

Used grammar/proof systems to prove parses from words

Fed raises interest rates 0.5% in effort to control inflation

Minimal grammar: 36 parses
Simple 10 rule grammar: 592 parses
Real-size broad-coverage grammar: millions of parses

Source of Grammar?

The Penn Treebank

Building a treebank seems a lot slower and less useful than building a grammar

But a treebank gives us many things

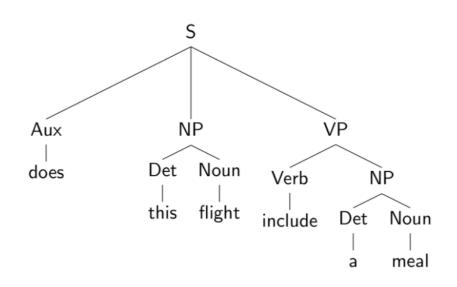
- Reusability of the labor
 - Many parsers, POS taggers, etc.
 - Valuable resource for linguistics
- Broad coverage
- Frequencies and distributional information
- A way to evaluate systems

[Marcus et al. 1993, Computational Linguistics]

```
( (S
    (NP-SBJ (DT The) (NN move))
    (VP (VBD followed)
      (NP
        (NP (DT a) (NN round))
        (PP (IN of)
          (NP
            (NP (JJ similar) (NNS increases))
            (PP (IN by)
              (NP (JJ other) (NNS lenders)))
            (PP (IN against)
              (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
      (, ,)
      (S-ADV
        (NP-SBJ (-NONE- *))
        (VP (VBG reflecting)
          (NP
            (NP (DT a) (VBG continuing) (NN decline))
            (PP-LOC (IN in)
              (NP (DT that) (NN market)))))))
    (...)))
```

... 989 VP \rightarrow VBG S 985 NP-SBJ \rightarrow NN 983 PP-MNR \rightarrow IN NP 983 NP-SBJ \rightarrow DT 969 VP \rightarrow VBN VP

40717 PP → IN NP 33803 S → NP-SBJ VP 22513 NP-SBJ → -NONE-21877 NP → NP PP 20740 NP → DT NN 14153 S → NP-SBJ VP . 12922 VP → TO VP 11881 PP-LOC → IN NP 11467 NP-SBJ → PRP 11378 NP → -NONE-11291 NP → NN

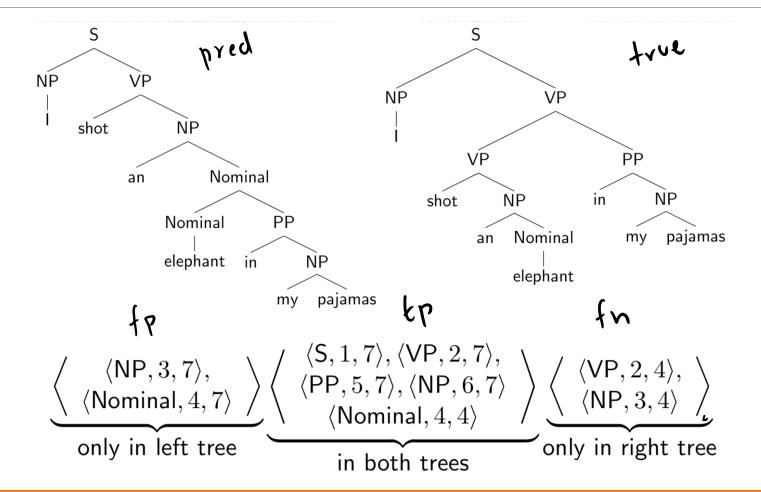

... 10 WHNP-1 \rightarrow WRB JJ 10 VP \rightarrow VP CC VP PP-TMP 10 VP \rightarrow VP CC VP ADVP-MNR 10 VP \rightarrow VBZ S , SBAR-ADV 10 VP \rightarrow VBZ S ADVP-TMP

100 VP \rightarrow VBD PP-PRD 100 PRN \rightarrow : NP : 100 NP \rightarrow DT JJS 100 NP-CLR \rightarrow NN 99 NP-SBJ-1 \rightarrow DT NNP 98 VP \rightarrow VBN NP PP-DIR 98 VP \rightarrow VBD PP-TMP 98 PP-TMP \rightarrow VBG NP 97 VP \rightarrow VBD ADVP-TMP VP

Some of the rules, with counts

4500 rules for VP!

Each parse tree is represented by a list of tuples: $\{\zeta_{i}, \zeta_{i}, \zeta_{$



$$\langle S, 0, 6 \rangle \langle NP, 1, 3 \rangle$$

 $\langle AUX, 0, 1 \rangle \langle Qet, 1, 2 \rangle$
 $\langle Novn, 2, 3 \rangle$

< NP, 4, 6 >

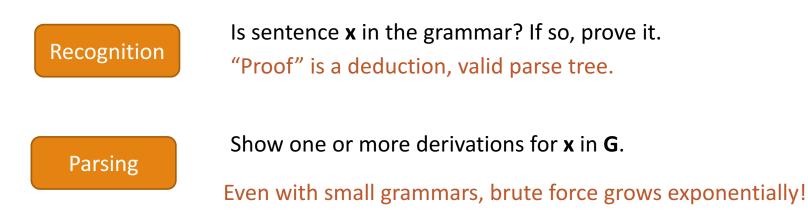
Use this to estimate precision/recall!

Evaluating Parses: Example

1

Outline

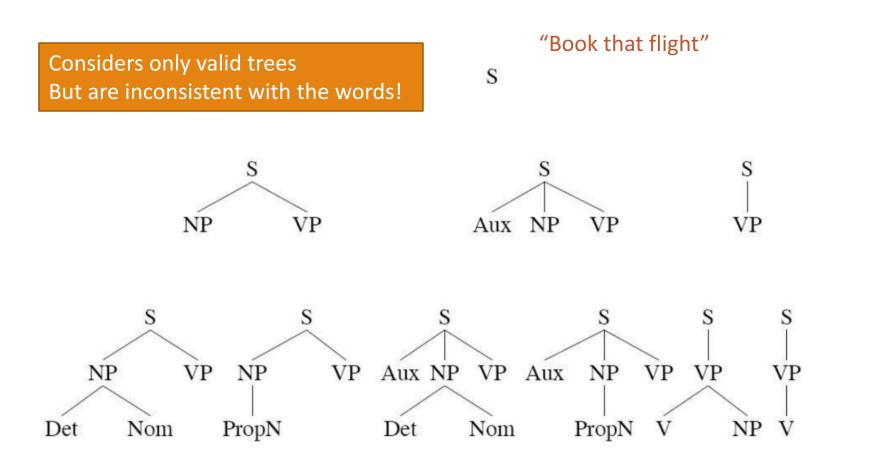
Syntactic Parsing

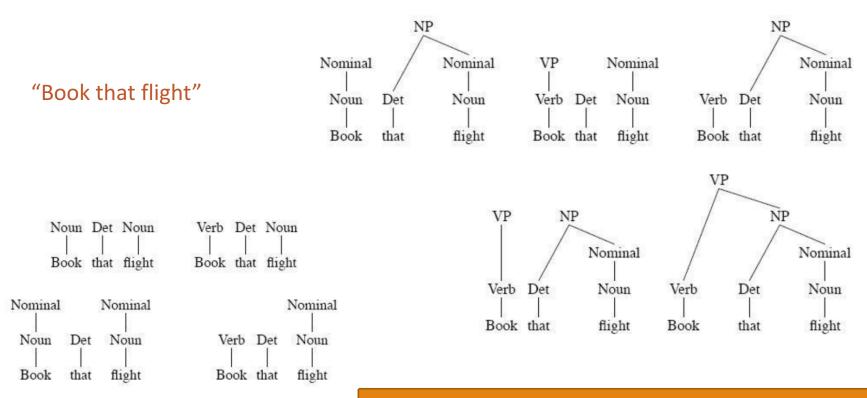

Context Free Grammars

Parsing: CKY Algorithm

CS 295: STATISTICAL NLP (WINTER 2017)

The Parsing Problem


Given sentence **x** and grammar **G**,

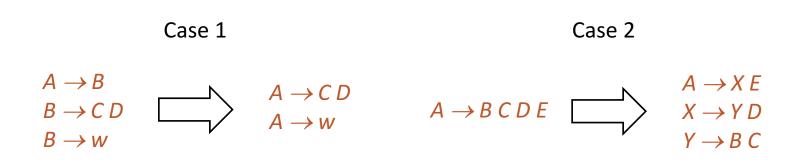

"Book that flight"

CS 295: STATISTICAL NLP (WINTER 2017)

Top Down Parsing

Bottom-up Parsing

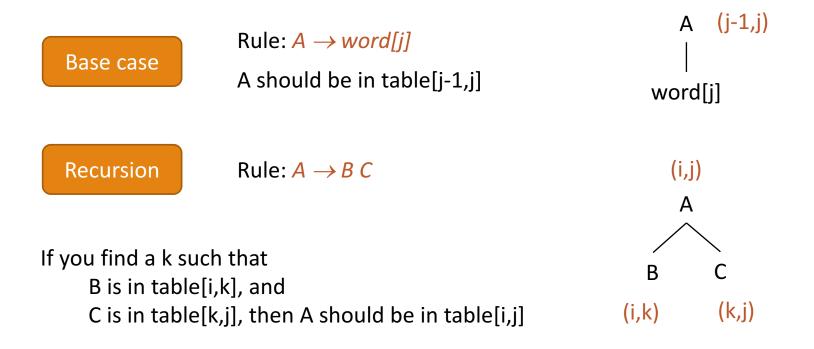
Builds only consistent trees But most of them are invalid (don't go anywhere)!


Chomsky Normal Form

Context free grammar where all non-terminals to go:

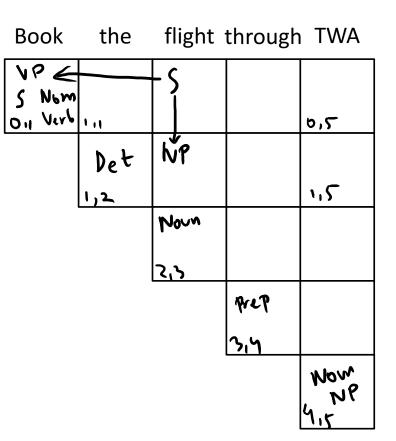
- 2 non-terminals, or
- A single terminal

 $A \rightarrow B C$ $D \rightarrow W$


Converting to CNF

Original Grammar Chomsky Normal Form $S \rightarrow NP VP$ $S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$ $S \rightarrow VP$ $S \rightarrow book \mid include \mid prefer$ $S \rightarrow Verb NP$ $S \rightarrow X2 PP$ $S \rightarrow Verb PP$ $S \rightarrow VP PP$ $NP \rightarrow I \mid she \mid me$ $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow TWA \mid Houston$ $NP \rightarrow Det Nominal$ $NP \rightarrow Det Nominal$ Nominal \rightarrow Noun Nominal \rightarrow book | flight | meal | money Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP Nominal \rightarrow Nominal PP $VP \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP PP$ $VP \rightarrow X2 PP$ $X2 \rightarrow Verb NP$ $VP \rightarrow Verb PP$ $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $VP \rightarrow VP PP$ $PP \rightarrow Preposition NP$ $PP \rightarrow Preposition NP$

Dynamic Programming


table[i,j] = Set of all valid non-terminals for the constituent span (i,j)

CKY Algorithm

 $S \rightarrow NP VP$

- $S \rightarrow X1 VP$
- $X1 \rightarrow Aux NP$
- $S \rightarrow book \mid include \mid prefer$
- $S \rightarrow Verb NP$
- $S \rightarrow X2 PP$
- $S \rightarrow Verb PP$
- $S \rightarrow VPPP$
- $NP \rightarrow I \mid she \mid me$
- $NP \rightarrow TWA \mid Houston$
- $NP \rightarrow Det Nominal$
- Nominal \rightarrow book | flight | meal | money
- Nominal \rightarrow Nominal Noun
- $Nominal \rightarrow Nominal PP$
- $VP \rightarrow book \mid include \mid prefer$
- $VP \rightarrow Verb NP$
- $VP \rightarrow X2 PP$
- $X2 \rightarrow Verb NP$
- $VP \rightarrow Verb PP$
- $VP \rightarrow VP PP$
- $PP \rightarrow Preposition NP$

Outline

Syntactic Parsing

Context Free Grammars

Parsing: CKY Algorithm

CS 295: STATISTICAL NLP (WINTER 2017)

Upcoming...

Homework

- Homework 2 is due in a week: February 13, 2017
- Homework 1 grades will be available tonight

Project

- Proposal is due on tonight
- Only 2 pages

Summaries

- Paper summaries: February 17, February 28, March 14
- Only 1 page each