Sequence Labeling

Prof. Sameer Singh

CS 295: STATISTICAL NLP WINTER 2017

January 31, 2017

Based on slides from Nathan Schneider, Noah Smith, Yejin Choi, and everyone else they copied from.

Outline

Sequence Labelling and POS Tagging

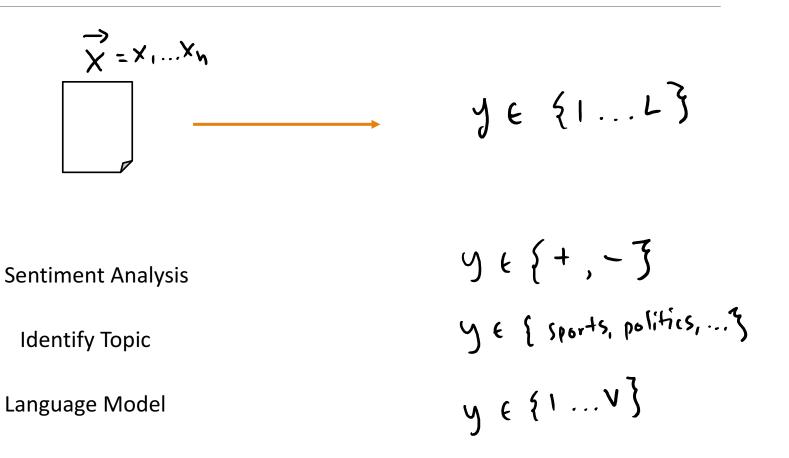
Generative Modeling: HMMs

Inference in HMMs: Viterbi and F/B

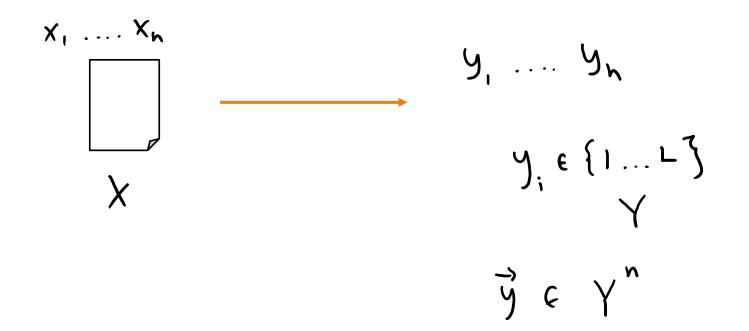
Unsupervised Tagging using EM

CS 295: STATISTICAL NLP (WINTER 2017)

Outline


Sequence Labelling and POS Tagging

Generative Modeling: HMMs


Inference in HMMs: Viterbi and F/B

Unsupervised Tagging using EM

Sequence Labeling

١

Parts of Speech

 $\vec{\chi}$, χ_{ζ} , χ_{ζ} , χ_{ζ} , χ_{ζ} This is a simple sentence. $\vec{\chi}$, DET VB DET ADJ NOUN.

Applications:

- Text to speech: record, lead, ...
- Machine translation: run, walk, ...
- Noun phrases: `grep {JJ | NN}* {NN | NNS}`
- and many others...

Parts of Speech: Tags

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb base form	eat
FW	foreign word	mea culpa	VBD	verb past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating
JJ	adjective	yellow	VBN	verb past participle	eaten
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, sing.	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	' or ''
POS	possessive ending	's	"	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	$[, (, \{, <$
PRP\$	possessive pronoun	your, one's)	right parenthesis	$],), \}, >$
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ; – -
RP	particle	up, off			

PTB

"Open classes"

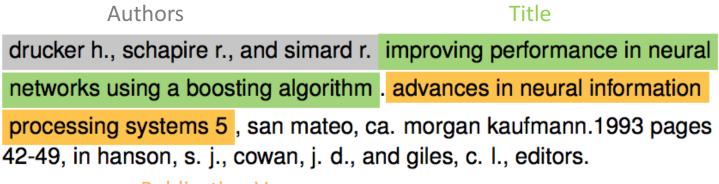
45

Nouns, verbs, adjectives, adverbs, numbers

"Closed classes"

- Modal verbs
- Prepositions (on, to)
- Particles (off, up)
- Determiners (the, some)
- Pronouns (she, they)
- Conjunctions (and, or)

Named Entity Recognition


Barack Obama spoke from the White House todayPERPEROOLOCLOCOO

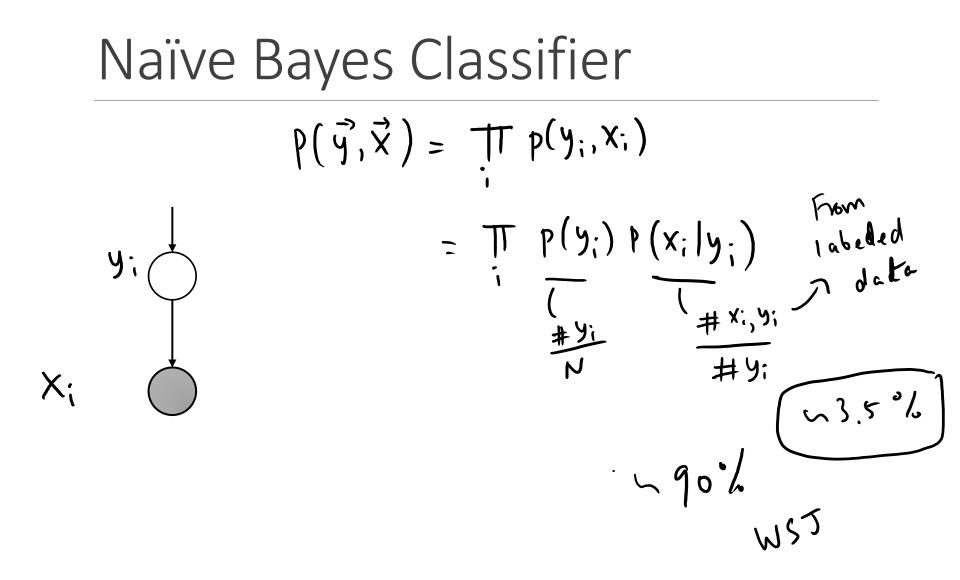
Field Segmentation: Ads

3BR flat in Bruntsfield , near main roads . Bright , well maintained ... SIZE TYPE O LOC O LOC LOC LOC O FEAT O FEAT FEAT ...

Field Segmentation: Citations

drucker h., schapire r., and simard r. improving performance in neural networks using a boosting algorithm. advances in neural information processing systems 5, san mateo, ca. morgan kaufmann.1993 pages 42-49, in hanson, s. j., cowan, j. d., and giles, c. l., editors,

Publication Venue


Outline

Sequence Labelling and POS Tagging

Generative Modeling: HMMs

Inference in HMMs: Viterbi and F/B

Unsupervised Tagging using EM

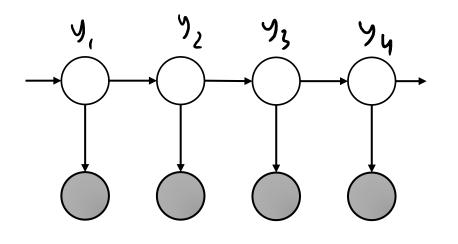
"Transitions" matter

VBD VB VBN VBZ VBP VBZ NNP NNS NN NNS CD NN Fed raises interest rates 0.5 percent

"Impossible" Transitions

- Two determiners never follow each other
- Two base form verbs never follow each other
- Determiner is followed by adjective or noun

Based on semantics

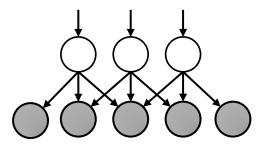

Fruit flies like a bird. VB IN Fruit flies like bananas. N V

How do we select a "consistent" set of POS tags?

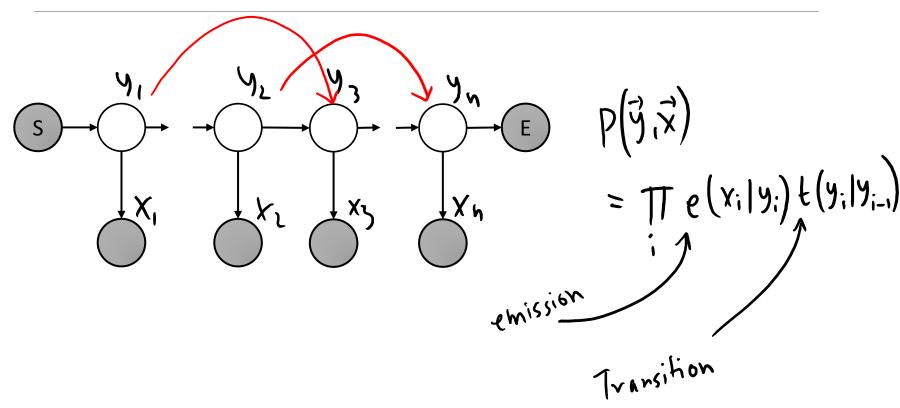
"Transitions" matter

"Iter ", "bananas"Types:WSJBrownUnambiguous (1 tag)
$$44,432$$
 (86%) $45,799$ (85%)Ambiguous (2+ tags) $7,025$ (14%) $8,050$ (15%)Tokens:Unambiguous (1 tag) $577,421$ (45%) $384,349$ (33%)Ambiguous (2+ tags) $711,780$ (55%) $786,646$ (67%)

"Transitions" matter



 $p(\vec{y},\vec{x}) = TT p(y_i) p(x_i|y_i)$


 $P(\vec{y}, \vec{x}) = \prod_{i} P(y_i | y_{i-i}) P(x_i | y_i)$

Transition on Words versus Tags

- Too many words, learn the same thing again
- Support for unseen words: "I like tenguizino!"

Hidden Markov Models

Example Sentence

- **X** This is a simple sentence
- S DET VB DET ADJ NOUN E

$$p(\vec{y}, \vec{x}) = e(\text{This}|\text{Det}) e(\text{is}|\text{vB}) e(\text{a}|\text{DET})....$$

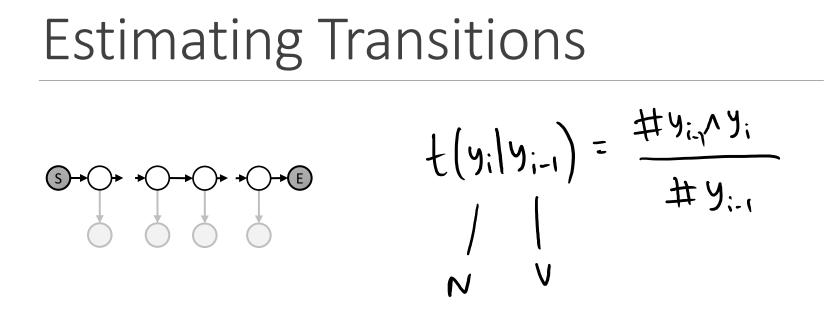
 $E(\text{DET}|\text{s}) E(\text{vB}|\text{DET}) E(\text{E}|\text{NOUN})$

~

Estimating Emissions

$$e(x;|y_i) = \frac{\#x; \wedge y_i}{\#y_i}$$

Smoothing


Unknown/rare words get inaccurate probabilities

 $\frac{\# X_i \Lambda y_i + k}{\# y_i + k V}$

Reminder: Laplace Smoothing (Add-k)
 Next la structure will be also at "factures"

IIII

Next lecture: we will look at "features"

Interpolation

- If there are too many tags, or too little data, some combinations are too rare
- Same as N-gram language models, "backoff" to simpler models

$$t(y_{i}|y_{i-1}) = \lambda P(y_{i}|y_{i-1}) + (1-\lambda) P(y_{i})$$

.

Outline

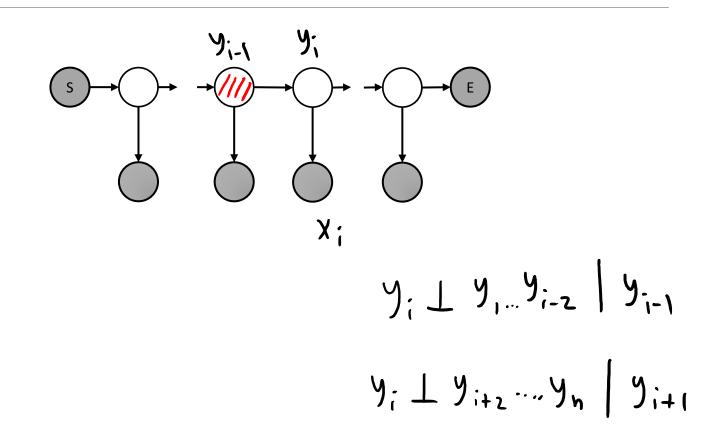
Sequence Labelling and POS Tagging

Generative Modeling: HMMs

Inference in HMMs: Viterbi and F/B

Unsupervised Tagging using EM

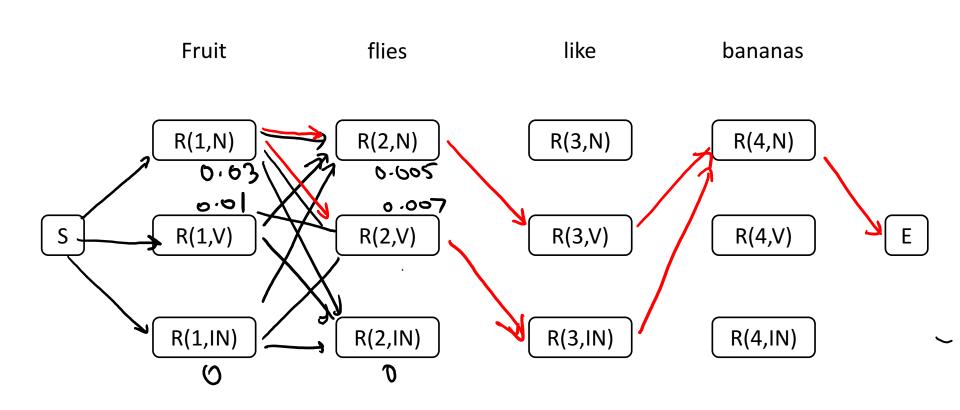
Predicting from HMMs


 $p(\vec{y}, \vec{x})$ $\vec{x} = \cdots \quad \vec{y} = ?$ $\vec{y} = avgmax_n p(\vec{y}|\vec{x}) = avgman \frac{p(\vec{y},\vec{x})}{p(\vec{x})}$ = $\underset{y}{\operatorname{argmax}} P(\vec{y}, \vec{x})$

5

Brute Force Inference

 $\dot{y} = avgmax P(\vec{y}|\vec{x})$ $\ddot{y} \in \mathcal{Y}^{h}$ $30(111)^{15}$ 45(45)¹⁵


Conditional Independence

Dynamic Programming

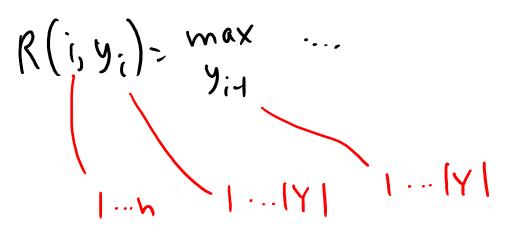
$$R(i, y_{i}) = \max_{\substack{y_{1} \dots y_{i-1} \\ y_{i} \dots y_{i-1} \\ y_{i-1}$$

State Lattice

Viterbi Decoding Algorithm

Initialization

$$R(0,S) = 1$$


Iterative Computation (forward)

$$R(i, y_i) = \max e[x_i | y_i] + (y_i | y_{i-1})$$

 Y_{i-1}
 $R(i-1, y_{i-1})$

r = 1 + 1 + 1 + 1 + 1

Follow pointers (backward)

Computational Complexity

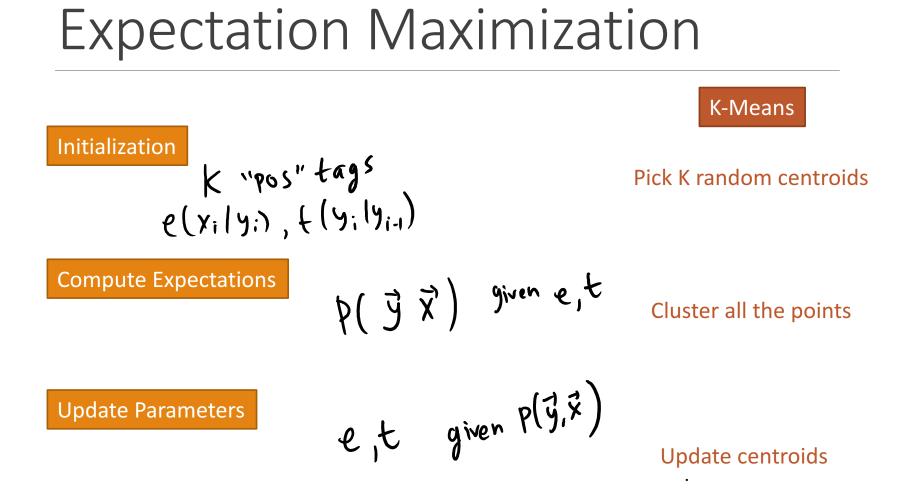
 $D(n|Y|^2)$

Outline

Sequence Labelling and POS Tagging

Generative Modeling: HMMs

Inference in HMMs: Viterbi and F/B


Unsupervised Tagging using EM

Unsupervised Tagging

Supervision is not always appropriate

- Linguist has to read and understand each sentence
 - Time consuming and expensive
- Contains domain specific signal in the labels
 - WSJ doesn't generalize to Twitter, for example
- Difficult to agree on the universal part-of-speech tags (C5 tags: 61, Brown: 87)
- Want to apply it to low-resource/unknown languages

Generalize the notion of "clustering" to sequence labeling.

Upcoming...

- Homework 2 is due (~10 days): February 9, 2017
- Write-up, data, and code for Homework 2 is up
- Ask questions early!

Project

Homework

- Proposal is due in a week: February 7, 2017
- Only 2 pages

Summaries

- Paper summaries: February 17, February 28, March 14
- Only 1 page each