Discriminative Language Models

Prof. Sameer Singh

CS 295: STATISTICAL NLP

WINTER 2017

January 26, 2017

Language Models

Probability of a Sentence

P("| love food") =
$$P("|"| < s >)$$

would expect to see?

tically (meaning)

 $P("|"| < s >)$
 $P("|"| < s >)$
 $P("|"| < s >)$

- Is a given sentence something you would expect to see?
- Syntactically (grammar) and Semantically (meaning)

Probability of the Next Word

- Predict what comes next for a given sequence of words.
- Think of it as V-way classification

Outline

Discriminative Language Models

Feed-forward Neural Networks

Recurrent Neural Networks

Upcoming..

Outline

Discriminative Language Models

Feed-forward Neural Networks

Recurrent Neural Networks

Upcoming..

Logistic Regression Model

$$P(\omega_{1}|\omega_{1}) \quad P(\omega_{1}|\omega_{1}, \omega_{1-1}) \simeq P(\omega_{1}|\omega_{1-1})$$

$$= \frac{e^{\theta_{\omega_{1}} \cdot \theta(\omega_{1-1})}}{e^{\theta_{\omega_{1}} \cdot \theta(\omega_{1-1})}}$$

$$= \frac{e^{\theta_{\omega_{1}} \cdot \theta(\omega_{1-1})}}{e^{\theta_{\omega_{1}} \cdot \theta(\omega_{1-1})}}$$

N-Grams as Logistic Reg.

$$\frac{P(\omega, |\omega|, 1)}{\sum_{\omega} \#''(\omega_{i-1}, \omega'')} \lesssim \frac{e^{\theta_{\omega} \varphi(\omega_{i-1})}}{e^{\theta_{\omega} \varphi(\omega_{i-1})}}$$

$$\frac{\varphi(\omega_{i})}{\varphi(\omega_{i})} = \frac{1}{2} \frac{1}{2$$

Other features...

Outline

Discriminative Language Models

Feed-forward Neural Networks

Recurrent Neural Networks

Upcoming..

Logistic Reg. w/ Embeddings

Neural Networks

Activation Functions, \int

sigmoid

$$f(x) = \frac{e^x}{e^x}$$

- 0 x S

softmax

$$f(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{x}}$$

And many others... ReLUs, PReLUs, ELU, step, max, and so on..

Why do they work?

Why do they work?

Simulated Example

Simple Feedforward NN LM

Bigram Model

Simple Feedforward NN LM

Deep Feedforward NN LM

Bengio et al. 2003

Outline

Discriminative Language Models

Feed-forward Neural Networks

Recurrent Neural Networks

Upcoming..

Sequence View of Simple NNs

Recurrent Neural Networks

Example: "I love food"

Power of RNNs: Characters!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Char-RNNs: Shakespeare!

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Char-RNNs: Wikipedia!

```
Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/quardian.
cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,
was starting to signing a major tripad of aid exile. []
```

Char-RNNs: Linux Code!

```
* If this error is set, we will need anything right after that BSD.
 */
static void action new function(struct s stat info *wb)
  unsigned long flags;
  int lel idx bit = e->edd, *sys & ~((unsigned long) *FIRST COMPAT);
 buf[0] = 0xFFFFFFFFF & (bit << 4);
 min(inc, slist->bytes);
 printk(KERN WARNING "Memory allocated %02x/%02x, "
    "original MLL instead\n"),
   min(min(multi run - s->len, max) * num data in),
    frame pos, sz + first seg);
 div u64 w(val, inb p);
  spin unlock(&disk->queue lock);
 mutex unlock(&s->sock->mutex);
 mutex unlock(&func->mutex);
 return disassemble(info->pending bh);
```

Extension: Stacking

26

Extension: Bidirectional RNNs

27

Deep Bidirectional RNNs

Extension: GRUs

Gated Recurrent Units

Extension: GRUs

Gated Recurrent Units

$$z_t = \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right)$$

$$r_t = \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right)$$

$$\tilde{h}_t = \tanh \left(W x_t + r_t \circ U h_{t-1} \right)$$

$$h_t = z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t$$

Estimating Parameters

Beyond the scope of the course

- Lots of tricks, heuristics, "domain knowledge"
- Lot of engineering for efficiency, e.g. GPUs
- New training algorithms being proposed every year
 - sometimes, architecture-specific
- Lots of available tools you can use!
 - Tensorflow, Torch, Keras, MxNET, etc.

Outline

Discriminative Language Models

Feed-forward Neural Networks

Recurrent Neural Networks

Upcoming..

Homework 1 so far...

Public

Private

Ruslan Salakhutdinov

Professor at Carnegie Mellon University Director of Artificial Intelligence, Apple Inc.

Learning Deep Unsupervised and Multimodal Models

Location: DBH 6011 **Time**: 11am - 12pm

Date: January 27, 2017

Meeting with PhD students, will post on Piazza

Upcoming...

Homework

- Homework 1 is due tonight: January 26, 2017
- Write-up, data, and code for Homework 2 is up
- Homework 2 is due: February 9, 2017

Project

- Proposal is due: February 7, 2017 (~2 weeks)
- Only 2 pages