

Linear Regression

PROF. SAMEER SINGH FALL 2017

CS 273A: Machine Learning

based on slides by Alex Ihler

Machine Learning

Bayes Error Wrapup

Gaussian Bayes Models

Linear Regression: Definition and Cost

Gradient Descent Algorithms

Measuring errors

True positive rate: $\#(y=1, \hat{y}=1) / \#(y=1)$ -- "sensitivity" False negative rate: $\#(y=1, \hat{y}=0) / \#(y=1)$ False positive rate: $\#(y=0, \hat{y}=1) / \#(y=0)$ True negative rate: $\#(y=0, \hat{y}=0) / \#(y=0)$ -- "specificity"

Decision Surfaces

ROC Curves

Characterize performance as we vary the decision threshold?

Probabilistic vs. Discriminative learning

"Discriminative" learning: Output prediction $\hat{y}(x)$

"Probabilistic" learning: Output probability p(y|x) (expresses confidence in outcomes)

"Probabilistic" learning

- Conditional models just explain y: p(y|x)
- Generative models also explain x: p(x,y)
 - Often a component of unsupervised or semi-supervised learning
- Bayes and Naïve Bayes classifiers are generative models

Probabilistic vs. Discriminative learning

"Discriminative" learning: Output prediction $\hat{y}(x)$

"Probabilistic" learning: Output probability p(y|x) (expresses confidence in outcomes)

Can use ROC curves for discriminative models also:

- Some notion of confidence, but doesn't correspond to a probability
- In our code: "predictSoft" (vs. hard prediction, "predict")

```
>> learner = gaussianBayesClassify(X,Y); % build a classifier
>> Ysoft = predictSoft(learner, X); % M x C matrix of confidences
>> plotSoftClassify2D(learner,X,Y); % shaded confidence plot
```

ROC Curves

Characterize performance as we vary our confidence threshold?

Machine Learning

Bayes Error Wrapup

Gaussian Bayes Models

Linear Regression: Definition and Cost

Gradient Descent Algorithms

Gaussian models

- "Bayes optimal" decision
 - Choose most likely class
- Decision boundary
 - Places where probabilities equal

What shape is the boundary?

Gaussian models

Bayes optimal decision boundary

- o p(y=0 | x) = p(y=1 | x)
- Transition point between p(y=0|x) >/< p(y=1|x)

$$\mathcal{N}(\underline{x} ; \underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2}} \left(\widehat{\Sigma} \right)^{-1/2} \exp\left\{ -\frac{1}{2} (\underline{x} - \underline{\mu})^T \Sigma^{-1} (\underline{x} - \underline{\mu}) \right\}$$

$$0 \stackrel{<}{>} \log \frac{p(x|y=0)}{p(x|y=1)} \frac{p(y=0)}{p(y=1)} = \stackrel{l_{bg}}{\stackrel{p(y=0)}{\stackrel{p(y=0)}{\stackrel{(\gamma=1)}{=}}} - \frac{1}{2} \left(x \stackrel{\gamma}{\underset{\lambda}{\in}} 2M_{\bullet} \stackrel{\gamma}{\underset{\lambda}{\in}} M_{\bullet} \stackrel{\gamma}{\underset{\lambda}{\in}} M_{\bullet} \right) + \frac{1}{2} \left(x \stackrel{\gamma}{\underset{\lambda}{\in}} 2M_{\bullet} \stackrel{\gamma}{\underset{\lambda}{\in}} M_{\bullet} \stackrel{\gamma}{\underset{\lambda}{\in}} M_{\bullet} \right) = \left(M_{\bullet} - M_{\bullet} \right)^{T} \stackrel{\gamma}{\underset{\lambda}{\in}} M_{\bullet} + M_{\bullet} \stackrel{\gamma}{\underset{\lambda}{\in}} M_{\bullet} \right)$$

Gaussian example

Spherical covariance: $\Sigma = \sigma^2 I = (\mu_0 - \mu_1)^T \Sigma^{-1} x + constants$

Decision rule
$$(\mu_0 - \mu_1)^T x \stackrel{<}{>} C$$

$$C = .5(\mu_0^T \Sigma^{-1} \mu_0$$
$$-\mu_1^T \Sigma^{-1} \mu_1)$$
$$-\log \frac{p(y=0)}{p(y=1)}$$

Non-spherical Gaussian distributions

Equal covariances => still linear decision rule

• May be "modulated" by variance direction

Class posterior probabilities

Consider comparing two classes

- o p(x | y=0) * p(y=0) vs p(x | y=1) * p(y=1)
- Write probability of each class as

• =
$$1 / (1 + \exp(-f))$$

the logistic function, or logistic sigmoid

p(y=1,X

Gaussian models

$$\mathcal{N}(\underline{x} \; ; \; \underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2}} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(\underline{x} - \underline{\mu})^T \Sigma^{-1}(\underline{x} - \underline{\mu})\right\}$$

$$0 \stackrel{<}{>} \log \frac{p(x|y=0)}{p(x|y=1)} \frac{p(y=0)}{p(y=1)} = (\mu_0 - \mu_1)^T \Sigma^{-1} x + constants$$

$$f$$

Now we also know that the probability of each class is given by: $p(y=0 | x) = Logistic(f) = Logistic(a^T x + b)$

We'll see this form again soon...

Machine Learning

Bayes Error Wrapup

Gaussian Bayes Models

Linear Regression: Definition and Cost

Gradient Descent Algorithms

Supervised learning

Notation

Supervised learning

Notation

Linear regression

Find a good f(x) within that family

Notation

$$\hat{y}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

Define feature Xo=1 (constant)

$$\Theta = \left[\Theta_{0}, \Theta_{1}, \dots, \Theta_{n}\right] \mid x (n+1)$$

$$\Theta = \left[\Theta_{0}, \Theta_{1}, \dots, \Theta_{n}\right] \mid x (n+1)$$

$$\chi = \left[1, \chi_{1}, \dots, \chi_{n}\right] \mid x (n+1)$$

Supervised learning

Notation

Mean squared error

How can we quantify the error?

MSE,
$$T(0) = \frac{1}{m} \lesssim (y^{(j)} - \hat{y}(x^{(j)}))^{2}$$

= $\frac{1}{m} \lesssim (y^{(j)} - \Theta \cdot x^{(j)T})^{2}$

Could choose something else, of course...

- Computationally convenient (more later)
- Measures the variance of the residuals
- Corresponds to likelihood under Gaussian model of "noise"

$$\mathcal{N}(y \; ; \; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\}$$

MSE cost function

$$MSE, J(\theta) = \frac{1}{m} \leq (y^{(j)} - \theta \cdot x^{(j)T})^{2} \quad y = [y^{(i)}, y^{(2)}, y^{(m)}]^{T}$$

$$J(\theta) = \frac{1}{m} (y^{T} - \theta x^{T}) (y^{T} - \theta x^{T})^{T} \quad x = \begin{bmatrix} x_{0}^{(i)} & x_{1}^{(i)} & \cdots & x_{h}^{(i)} \\ \vdots & \vdots & \vdots \\ x_{0}^{(m)} & x_{1}^{(m)} & \cdots & x_{h}^{(m)} \end{bmatrix}$$

#	Python / NumPy:
e	= Y - X.dot(theta.T);
J	= e.T.dot(e) / m # = np.mean(e ** 2)

Supervised learning

Notation

Visualizing the cost function

Finding good parameters

Want to find parameters which minimize our error...

Think of a cost "surface": error residual for that θ ...

Machine Learning

Bayes Error Wrapup

Gaussian Bayes Models

Linear Regression: Definition and Cost

Gradient Descent Algorithms

Gradient descent

- How to change θ to improve J(θ)?
- Choose a direction in which J(θ) is decreasing

Gradient descent

- $J(\theta) \qquad \qquad \frac{\partial J(\theta)}{\partial \theta}$
- How to change θ to improve J(θ)?
- Choose a direction in which J(θ) is decreasing
- Derivative $\frac{\partial J(\theta)}{\partial \theta}$
- Positive => increasing
- Negative => decreasing

Gradient descent in >2 dimensions

Gradient descent

Initialize $\theta = 0$; Initialization Step size Do{ Can change as a function of iteration $\theta \leftarrow \theta - \alpha \nabla_{\theta} J(\theta)$ Gradient direction } while $(\alpha ||\nabla_{\theta} J|| > \epsilon)$ Stopping condition $\partial J(\theta)$ $\partial \theta$ $J(\theta)$

Gradient for the MSE

$$J(\theta) = \frac{1}{m} \underset{j}{\leq} (y^{(j)} - \theta_0 x^{(j)}_{\bullet} - \theta_1 x^{(j)}_{\bullet} - \theta_n x^{(j)}_{h})^2$$

$$\nabla J(\theta) = \begin{bmatrix} \frac{1}{2} J(\theta) & \frac{1}{2} J(\theta) & \frac{1}{2} J(\theta) & \frac{1}{2} J(\theta) & \frac{1}{2} \theta_0 x^{(j)} & \frac{1}{2} \theta_0$$

Upcoming...

Misc.

- Lot of activity on Piazza
- You have been added to Gradescope

Home	work	

- Homework 1 due tonight
- Homework 2 released tonight
- HW2 Due: October 19, 2017