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Measuring errors
Confusion matrix

Can extend to more classes

True positive rate:     #(y=1 , ŷ=1) / #(y=1)    -- “sensitivity”

False negative rate:  #(y=1 , ŷ=0) / #(y=1)

False positive rate:   #(y=0 , ŷ=1) / #(y=0)

True negative rate:   #(y=0 , ŷ=0) / #(y=0)     -- “specificity”

Predict 0 Predict 1

Y=0 380 5

Y=1 338 3



Decision Surfaces

p(x , y=1 )
p(x , y=0 )
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Add multiplier alpha:



ROC Curves
Characterize performance as we vary the decision threshold?
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Probabilistic vs. Discriminative learning

“Probabilistic” learning
◦ Conditional models just explain y:  p(y|x)
◦ Generative models also explain x: p(x,y)

◦ Often a component of unsupervised or semi-supervised learning

◦ Bayes and Naïve Bayes classifiers are generative models

“Discriminative” learning:
Output prediction ŷ(x)

“Probabilistic” learning:
Output probability p(y|x)

(expresses confidence in outcomes) 



Probabilistic vs. Discriminative learning

Can use ROC curves for discriminative models also:
◦ Some notion of confidence, but doesn’t correspond to a probability

◦ In our code: “predictSoft”  (vs. hard prediction, “predict”)

>> learner = gaussianBayesClassify(X,Y);  % build a classifier
>> Ysoft = predictSoft(learner, X);       %  M x C matrix of confidences
>> plotSoftClassify2D(learner,X,Y);       %  shaded confidence plot

“Discriminative” learning:
Output prediction ŷ(x)

“Probabilistic” learning:
Output probability p(y|x)

(expresses confidence in outcomes) 



ROC Curves
Characterize performance as we vary our confidence threshold?
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Reduce performance to one number?
AUC = “area under the ROC curve”

0.5   < AUC  <  1
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Gaussian models
“Bayes optimal” decision

◦ Choose most likely class

Decision boundary
◦ Places where probabilities equal

What shape is the boundary?



Gaussian models
Bayes optimal decision boundary

◦ p(y=0 | x) = p(y=1 | x)

◦ Transition point between p(y=0|x) >/< p(y=1|x)

Assume Gaussian models with equal covariances



Gaussian example
Spherical covariance: Σ = σ2 I

Decision rule
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Non-spherical Gaussian distributions
Equal covariances => still linear decision rule

◦ May be “modulated” by variance direction

◦ Scales;  rotates (if correlated) 
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Variance
[ 3   0   ]
[ 0  .25 ]



Class posterior probabilities
Consider comparing two classes

◦ p(x | y=0) * p(y=0)     vs     p(x | y=1) * p(y=1)

◦ Write probability of each class as

◦ p(y=0 | x) = p(y=0, x) / p(x) 

◦ = p(y=0, x) / ( p(y=0,x) + p(y=1,x) )

◦ =  1 / (1  + exp( - f ) )  

◦ f = log [ p(y=0, x) / p(y=1, x) ] the logistic function, or logistic sigmoid



Gaussian models
Return to Gaussian models with equal covariances

Now we also know that the probability of each class is given by:
p(y=0 | x) = Logistic( f )  = Logistic(  aT x + b ) 

We’ll see this form again soon…

f
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Supervised learning
Notation

◦ Features      x

◦ Targets         y

◦ Predictions  ŷ

◦ Parameters  θ
Program  (“Learner”)

Characterized by 
some “parameters” θ

Procedure (using θ) 
that outputs a prediction

Training data 
(examples)

Features

Learning algorithm

Change θ
Improve performance

Feedback / 
Target values Score performance

(“cost function”)
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Linear regression

Define form of function f(x) explicitly

Find a good f(x) within that family
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Measuring error

0 20
0



Mean squared error
How can we quantify the error?

Could choose something else, of course…
◦ Computationally convenient (more later)

◦ Measures the variance of the residuals

◦ Corresponds to likelihood under Gaussian model of “noise”



MSE cost function

# Python / NumPy:
e = Y – X.dot( theta.T );
J = e.T.dot( e ) / m  # = np.mean( e ** 2 )
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Visualizing the cost function
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Finding good parameters
Want to find parameters which minimize our error…

Think of a cost “surface”: error residual for that θ…
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Gradient descent

?

• How to change θ to 

improve J(θ)?

• Choose a direction in 
which J(θ) is decreasing



• How to change θ to 

improve J(θ)?

• Choose a direction in 
which J(θ) is decreasing

• Derivative

• Positive => increasing

• Negative => decreasing

Gradient descent



Gradient descent in >2 dimensions

• Gradient vector

Indicates direction of steepest ascent
(negative = steepest descent)



Gradient descent
Initialization

Step size
◦ Can change as a function of iteration

Gradient direction

Stopping condition

Initialize θ

Do{

θ ← θ - α∇θJ(θ)

} while (α||∇θJ|| > ε)



Gradient for the MSE



Upcoming…

• Lot of activity on Piazza
• You have been added to Gradescope

Misc.

• Homework 1 due tonight
• Homework 2 released tonight
• HW2 Due: October 19, 2017

Homework


